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Abstract. In the present work, the three-dimensional modified radial Schrédinger equation is
analytically solved. The nonrelativistic interactions under new modified Cornell potential (NMCP, in
short) at finite temperature, are extended to the symmetries of nonrelativistic noncommutative space
phase (NRNSP, in short), using the generalized Bopp’s shift method in the case of perturbed
nonrelativistic quantum chromodynamics (pNRQCD). W generalize this process by adding multi-

variable coupling potentials 2%L@, %L@ and (—DL@ + %) together with the modified Cornell

potential model in three-dimensional nonrelativistic quantum mechanics noncommutative phase
space (3D-NCSP, in short). The new energy eigenvalues and the corresponding Hamiltonian operator
are calculated in 3D-NCSP symmetries instead of solving the modified Schrodinger equation with
the Weyl Moyal star product. The present results, in (3D-NCSP), are applied to the charmonium and
bottomonium masses at finite temperature. The present approach successfully generalizes the energy
eigenvalues at finite temperature in 3D-NCSP symmetries. It is found that the perturbative solutions
of the discrete spectrum and quarkonium mass can be expressed by the Gamma function, the discreet

atomic quantum numbers (j,[,s,m) of the QQ state and the potential parameters (4, b, C, D), in

addition to noncommutativity parameters (6 and 8). The total complete degeneracy of new energy
levels of NMCP changed to become equals to the value 6n? instead the values 2n? in ordinary
quantum mechanics. Our obtained results are in good agreement with the already existing literature
in NCSP.

Subject Classification Numbers: 03.65.-w; 03.65. Ge; 03.65. Fd; 03.65. Ca

1. Introduction

It is well known that the Cornell potential model was one of the most popular models for
studying the interactions in such systems as quarkonium (heavy quarkonia) consisting of heavy

quark and antiquark (charmoniumcc, bottomonium bb and bc mesons in the nonrelativistic quantum
chromodynamics NRQCD). It is consisting of two terms. One of the terms is responsible for the
Coulomb interaction of quarks and the other corresponds to the strong interaction, which provides
confinement, it is the first potentials proposed to describe the interaction between heavy quarks [1-
10]. Furthermore, the Cornell model has been extraordinarily successful in describing hadronic
phenomenology, in addition to its success in describing a huge amount of experimental data
including masses, widths, radiative and strong transitions [11-12]. The problem of calculating the
energy spectra for the Schrodinger equation with various types of potentials such as Cornell potential
and the Killingbeck potential at finite temperature has been attracting interest for recent years [9-
11]. The main objective is to develop the research article for Abu-Shady [11] and expand it to a large
symmetry known by the noncommutative space phase (NCSP, in short) to achieve a more accurate
physical vision so that this study becomes valid in the field of nanotechnology. And on the other
hand, to explore the possibility of creating new applications and more profound interpretations in
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the sub-atomics and nano scales using the new version of the modified Cornell potential, which has
the following form:

b(T ) n C G F\ 7=
Vep() = (T, 1)1 =202 5 Vo, (7) = Vip () — (5 + 25 + - ) L6 (1)
Ordinary— QM NCQM

We refer to this term L@ in the materials and methods section. The new structure of NCSP based on
new canonical commutations relations in both Schrédinger SP and Heisenberg HP, respectively, as
follows (Throughout this paper, the natural units ¢ = # = 1 will be used) [13-18]:

1)
[0 1y] = 84, = [25 8] = [, D, (O] = i8her; = A%,4P, = %
A %A - % A~ , A A~ H/LV
[y, x,] =0 - [x#, z,] = [x#(t), z,@®)] = i0,, > A%, A%, = —
I Ak A 5 v
[p/u py]=0- [p/u pv] = [pu(t)t pv(t)] leuv = Ap,uApv = 2

where the indicesu, v = 1,_3 and h, 7 18 the effective Planck constant. This means that the principle
of uncertainty for Heisenberg generalized to include another two new uncertainties related to the
positions (a?wa?v) and the momenta’s (ﬁﬂ,ﬁv), in addition to the ordinary uncertainty of (fﬂ,ﬁv).

The very small two parameters 6#V and 8" (compared to the energy) are elements of two
antisymmetric real matrixes, parameters of noncommutativity and (*) denote to the Weyl Moyal star
product, which is generalized between two arbitrary functions (f,g) (x,p) to the new form
f&,9)§Rxp) = (f * g)(x,p) in 3D-NCSP symmetries [18-25]:

(f,9) (p) > (F * 9 (x,p) = (fg 50" 03 fFg - 58 oLfalg) (xp) 3)

The second and the third terms in the above equation are present the effects of (space-space) and
(phase-phase) noncommutativity properties. It should be noted that noncommutativity was introduced
firstly by Heisenberg in 1930 [26] and then by Syndre in 1947 [27]. However, the new operators
HOE (a?u Y ﬁu)(t) in HP are depending on the corresponding new operators & = X, V p, in SP
from the following projections relations:

g(At) = exp( iﬁcp (t - to))f exl?( - iﬁcp(t - to)) =
§(t) = exp(ifnp(t — o)) * & * exp(— iH? (t — to)) (4)

here§ = x, V p, andé(t) = (xu V p,)(t), while the dynamics of new systems %(tt) are described

from the following motion equations in NCSP:

O = —ife, ] = L2 = —ilE0): A2 (5)

The operators Hcp and H,? are present the quantum Hamiltonian operators for MCP and NMCP in
the QM and its extension NCSP, respectively. This paper consists of five sections and the organization
scheme is given as follows: In the next section, the theory part, we briefly review the SE with modified
Cornell potential at finite temperature on based to ref. [11-12]. Section 3 is devoted to studying the
modified Schrodinger equation MSE by applying the generalized Bopp's shift method and obtaining
the NMCP and the modified spin-orbit operator at finite temperature. Then, we applied the standard
perturbation theory to find the quantum spectrum of the ground state, the first excited state and the
nt"excited-state produced by the effects of modified spin-orbit and modified Zeeman interactions.
After that, in the fourth section, a discussion of the main results is presented in addition to determining
the new formula of mass spectra of the quarkonium system in 3D-NCSP symmetries. Finally, in the
last section, a summary and conclusions are presented.
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2. Theory

2.1 Overview of the eigenfunctions and the energy eigenvalues for the modified Cornell
potential at finite temperature in QM

We shall recall briefly in this section, the time-independent Schrodinger equation for the MCP at
finite temperature [11]:
b(T,r)

b
Vop(r) = ar =7 = Vo (1) = (T, P)r = 202 ©)
The relative spatial coordinate between the two quarks isr, a and b are purely phenomenological

constants of the model. In a thermal medium of a positive temperature T, the potential is modified by
color screening which can be parameterized in the form [7, 11]:

a(T,r) =

(1 —exp(—mp(T)r)) and b(T,r) = b exp(—mp(T)r) (7)

mp(T)r

Here mp (T) is the Debye screening mass. The expand with Taylor series around r = 0 gives [11]:
Vop(r) = A+ Cr — = — Dr? (8)

where A = bmp(T), C = a-1/2bmp?(T) and D = 1/2amp(T). If we insert this potential into the

Schrodinger equation, the radial part function R(r) = @ is given as [11, 12]:

d2u(r) 2du(r)

+2u[E—A+§—Cr+Dr2—lz(i%)]U(r)=o

dr? r dr
d?R(r) _ b 2 W+ .
=0+ 2u [E A+2—Cr+Dr —W]R(r) =0 9)
here u = mmin;? the reduced mass for the quarkonium particle for example (cc, bb, c5, b5, bu)
aT'"q

R(T)
T

Dby n [ —ams2P2
W(r,0,¢9) = Cyr V?Pin " exp(/2Dy,1) (—rza) <r V2Din exp (-2 2D1nr)> Y™ (6, $)(10)

In addition, the energy E,,; of the potential in Eq. (8) [11]:

and cb. The complete wave function ¥(r, 6, ) = Y™ (6, ¢) is given by [11, 12]:

3C 8D
3C 6D 2plz—=3+b
Enl:A+?_§_ (52 &3 ) _ (11)
1+2niJ1+4((l+1/2)2—1/4)+8(;‘—3C—24’;—f

3C , 6D 3C 8D . o
where D, = —u (En —A-— 5 T E) , Dy = (E -5t b) and C,,; is a normalization constant
while ry = 1/6 is the characteristic radius of meson and n is a natural number accounting for the
radial excitation while [ is a non-negative integer number that represents the orbital angular

momentum.

3. Materials and Methods
3.1 Solution of MSE for new modified Cornell potential at finite temperature in pNRQCD

In this section, we shall give an overview or a brief preliminary for NMCP in (3D-NCSP)
symmetries. To perform this task the physical form of MSE, it is necessary to replace ordinary three-

dimensional Hamiltonian operators ﬁcp (xﬂ,p“), complex wave function ¥ (7) and energy E,; by
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~ L e (O
new three Hamiltonian operatorsH,?c)(a?wﬁH), the new complex wave functlon'z”(r) and new

values E;P respectively. In addition to replacing the ordinary product with the Weyl Moyal star
product, which allows us to construct the MSE in 3D-NCSP symmetries as [28-31]:

Aoy (00 )¥P(7) = En¥(7) = HE(%,,0,) * ¥ (:) =EPy (:) (12)

The generalized Bopp’s shift method has been successfully applied to relativistic and nonrelativistic
noncommutative quantum mechanical problems using modified Dirac equation (MDE), modified
Klein-Gordon equation (MKGE) and MSE. This method has produced very promising results for
several situations having physical, chemical interests. The method reduces MDE, MKGE and MSE
to the Dirac equation, Klein-Gordon and equation Schrodinger, respectively, under two-
simultaneously translations in space and phase. It is based on the following new commutators [13-
17,32,33]:

[k\wiv] = [fu(t)»fv(t)] = ie/w and [ﬁwﬁv] = [ﬁu(t)'ﬁv(t)] = ig/w (13)

The new generalized positions and momentum coordinates (J?M, ﬁv) in 3D-NCSP are defined in

terms of the commutative counterparts (xu, pv) in ordinary quantum mechanics via, respectively
[29-32]:

P Oy Oy
(xw pv) = (xw pv) = (xu - %pw Pyt %xv> (14)
The above equation allows us to obtain the two operators (#2,$2) in 3D-NCSP symmetries [28-
31]:

-
(r3,p?) = (#%,p%) = (rz —LO,p*> + L6 ) (15)

=2 — — —
The two couplings LO and L 6 are (Lx912 + L, 0,35 + Lz@13) and(Lxelz + L,0,3 + th913),
respectively and (Ly, Ly and L,) are the three components of the angular momentum operatorz
while 6, = 6,,,/2. Thus, the reduced Schrodinger equation (without star product) can be written as:

AR p,) + ¥ (7) = 2w (7) > HEu b)Y = ELHE) (16)
The new operator of Hamiltonian H,;> (£, ,,) can be expressed as:

g 6
Hep (x”’ x") = Hrizc)(xwpu) =H (xu =Xy~ %pv;pu =Pyt %xv>

2ty (1= o) () i

Where V., (#) denote to the NMCP in 3D-NCSP symmetries:

Vop(r) = Vep (7) = A+ CF7 — 2 — D#? (18)

Again, applying Eq. (15) to find the three terms (C7, (— g) and(—D#?)), which will be used to
determine the NMCPV, (), as follows:
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b _b__b_ b7 2
Zo—2=—2- 10 +0(6%)
Cr— CF = Cr— 16 + 0(0?) (19)

—Dr? - —D#? = —Dr? + DLO + 0(0?)

Substituting, Eq. (19) into Eq. (18), gives the new modified Cornell potential in 3D-NCSP
symmetries as follows:

A b  C [
Vep () = Vop(1) — (552 + 5.~ D) LO (20)

By making the substitution above equation into Eq. (17), we find the global our working new
modified Hamiltonian operator H,,P (#) satisfies the equation in 3D-NCSP symmetries:

Hep(%,0y) = Hut (7)) = Hep (0, 0y) + Hppr (1,0, 6) 21)

where the operator Hy, (xu,pv) is just the ordinary Hamiltonian operator with modified Cornell
potential in commutative quantum mechanics:

2 b
Hep(¥uPu) = 5+ A+ Cr =2 = Dr? (22)

while the rest part H.b . (r,@,8) (The perturbative Hamiltonian operator) is proportional with two

pert
infinitesimals parameters (6 and 0):

b
2r3

= c .
H? . (r,0,0) = — (55 +——D)L6 o (23)

Thus, we can consider H,.cp (1) as a perturbation term compared with the principal Hamiltonian
operator H, (xw pﬂ) in 3D-NCSP symmetries.

3.2 The exact modified spin-orbit operator for heavy quarkonium systems under NMCP in
pNRQCD:

In this subsection, we will apply the same strategy, which we have seen exclusively in some of our
published scientific works [29-31]. Under such a particular choice, one can easily reproduce both

couplings (L® and L§) to the new physical forms (yOLS andyOLS), respectively. Thus, the

perturbative Hamiltonian operator H;Zrt (7,0, ) for heavy quarkonium system will be transformed

into the modified spin-orbit operator Hy (r, 8, 8), under the new modified Cornell model as follows:

A = b c )22
Hpert(1,6,0) > H (r,0,6) =y {— (z+=-D)+ Z} LS (24)

2r3

— -2 — 2 — 2
here O = J@lzz +0,3° +0,5%,0 = \/612 + 0,3 + 013 andy is a new constant, which play the

role of the strong coupling constant in the quantum chromodynamics or QCD theory, we have chosen
ﬁ

the two vectors @ and 6 parallel to the spin S of heavy quarkonium system. Furthermore, the above
perturbative terms H;prt (r) can be rewritten to the following new form:

e
A b |, C ]
H2(r0,0) = ~E{(5+ 5 - D)0~} 02~ 17 = 87 25)
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where ] and S are defined as the operators of the total angular momentum and spin of quarkomum

systems. This operator, Hi’ (r, 0, 8), traduces the coupling between spin S and orbit momentum L
The set (H,2 (1, 0,0), ]2, LZ, S2and J,) forms a complete of conserved physics quantities. For spin —
1, the eigenvalues of the spin-orbit coupling operator are k(l) = %{] G+ -Il+1) -
2} corresponding j = [ + 1 (spin great), j = [ (spin middle) and j = [ — 1 (spin little), respectively,
then, one can form a diagonal (3 X 3)matrix for NMCP in 3D-NCSP symmetries, with diagonal

elements(Hj Cp)l1 (HY ,, and (HY ;5 are given by:

(1), = V@ <( +—-D)0 ——>1f] =1+1
MGEN —yk2(1)<( -+--D)6 ——> ifj =1 (26)
(Hio)yy = —1ks D <(%+§—D)@ —%)ifj —1-1

here (kl(l),kz(l), k3(l)) = l(l —2,—20l—2) and j is the total quantum number. The non-null
w (H )Zzand (HSP 4°f the modified Hamiltonian operator H P () will
change the energy values E,,;,,by creating three new values:

diagonal elements (H e

Eshy = (W (r,0,9) |(HD),,| ¥ 6,6)
ES, = (¥(r,6,9) |(Hi§’ MEIGERD) (27)
We will see them in detail in the next subsection. After profound calculation, one can show that the

new radial function R,,;(r)satisfying the following differential equation for modified Cornell
potential:

Lt9 ERIGEY
2u 2ur?

danl(T)
dr?

+ 24t |Eyy — A= Cr +2 4 Dr? +(—+——D)L@ Ry() =0 (28

Through our observation of the expression of H;’e’rt (r), which appear in the equation (23), we see it
as proportionate to two infinitesimals parameters (@ and@), thus, in what follows, we proceed to solve
the modified radial part of the MSE that is, equation (28) by applying standard perturbation theory to
find acceptable solutions at the first order of two parameters @ and 8. The proposed solutions for
MSE under NMCP include energy corrections, which are produced automatically from two principal
physical phoneme’s, the first one is the effect of modified spin-orbit interaction and the second is the
modified Zeeman effect while the stark effect can appear in the linear part of new modified Cornell
model.

3.3 The exact modified spin-orbit spectrum for heavy quarkonium system under NMCP in
pNRQCD

The purpose here is to give a complete prescription to determine the energy level of the ground state,
the first excited state and the n'"excited state, of heavy quarkonium systems. We first find the
corrections (Esoq (k1 (1), b, C,D,n, Dy, D1y), Eggry (k2 (1), b, C, D, m, Dy, Dyy) and

E; (k3(1),b,C,D,n,D;,Dyy)) for heavy quarkonium system such as (charmonium and
bottomonium) mesons that have the quark and antiquark flavor under new modified Cornell potential



International Journal of Physics, Chemistry and Astronomy Vol. 88 7

at finite temperature, which have three polarities up and down j = [ + 1 (spin great), j = [ (spin

middle) and j = [ — 1 (spin little), respectively, at the first order of two parameters (6 and 8).
Moreover, by applying the perturbative theory, in the case of perturbed nonrelativistic quantum
chromodynamics pNRQCD, we obtained the following results:

Escgg = VCnlzkl(l)
N N “(1b o cC g
" /2bin * J2bin AL _
fo r V2Pin exp(2,/2Dy,1) {( dr) ( n exp(—2 2D1nr)>} ((2r3 +5 D) 0 2#> dr
Esct?m = VCnlsz(l)

N Ny “(1b o cC g
~[2Din * J2bin 2 _Z
fo r V2P1n exp(2,/2Dy,1) {( dr) ( n exp(—2 2D1nr)>} ((2r3 +5 D) 0 2#> dr

E} = —yCuks(D)

sol

2Dy 2 -
f0+ r fzbln exp(2+/2Dy,7) {( r) <r_2n+m exp(—2 2D1nr)>} <(2b? + % — D) 0 — 2%) dr (29)
We have used the orthogonality property of the spherical

harmonics [ Y (6, ) Y™ (6, @) sin(0) dOdd = 86y~ Now, we can rewrite the above equations
to the simplified new form:

Eso—gcp(kliAi b, C,D,n, DZJ Dln) =
—yCui’ k1 (D {9 [T1(b,n, D, D1) + T2(C,n, Dy, Dyy) + T5(D,m, Dy, D1y)] — 20 5—T4(n, Dz, D1yy)
ESO—me(kZi A, b, C! D, n, DZI Dln) =

Ego- lcp(k3;A b,C,D,n,D,, D) =
_nd12k3(l){ [T1(b,n, D, D1y) + T5(C,m, Dy, Dyy) + T5(D, 1, Dy, Dyy)] — _T4(n D,,Dy,)
(30)

—¥Ci ko (1) {9 [Ty(b,n, Dy, D1y,) + T,(C,n, Dy, D1yy) + T3(D,n, Dy, D1yy)] — 20 —T4(n, Dy, Dln)}

Moreover, the expressions of the 4-factorsTi(i = ﬁ) are given by:

Tl(bl n, DZI Dln) =

b

40 _ 2D, 3 d n —2n+ 2D, 2
EJ r 2Din exp(Z,/ZDlnr){<—rZE> (r V2D1n exp(—2 2D1nr)>} dr
0
C
TZ(Ci n, DZ;Dln) = E

+o0 202 n/ _opi 2Dz 2
f r V2Din exp(Z‘/ZDlnT) {( ) (r V2Pin exp(—2 2D1nr)>} dr
0

T3(D,TL,D2,D1n) =-D

+o 2D d\" [ -2n+-2P2_ 2D, 2
J r V2P exp(2,/2Dy,1) {(—rz d_> ( V2D1n gxp(—2 2D1nr)>}
0

r
T,(n, Dz»D1n) =

2D, 2
—fO r \/2D1n exp(Z,/ZDlnT) {( 2 dr> < —2n+— exp(—2 2D1nr)>} dr (31)

For the ground state, we have, the expressions of the 4-factorsTi(i = ﬁ) will be simplified to the

following form:
+o0

b
T,(b,n = 0,D,,Dy,) = 5] rt=2=1 oxp(—Bor) dr
0
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c [+
T,(C,n=0,D,,D;,) = E] rto~Lexp(—Por) dr Ts(D,n = 0,D,, Ds,,)
0
=-D f0+wr’10+1‘1 exp(—B,r) dr = —=DT,(n = 0,D,, D;,,) (32)

2D,

3C | 6D
where Dyg = —p (Eo —A-—+ 5—2>, Bo = 24/2D4o and4,y = Tops

following special integral [34]:

. It is convenient to apply the

4

f0+oo x""Lexp(—pxP)dx = ET?EI" (%) (33)

With conditions (Re )0, Re v)0 andp)0) while I (g) denoting to the ordinary Gamma function.
After straightforward calculations, we can obtain explicit results:

b

Tl(btn = 0) DZ; DIO) = Eﬁo_(AO_Z)F(AO - 2)
c _
Tz(C,n = 0) DZJDIO) = E.BO AOF(AO)
T3(D,n = 0,D3,D10) = =Dy %™ r (A + 1) = =DT,y(n = 0,D,, D) (34)

Allows us the two to obtain the exact modificationsE Scf g (ky,A,b,C,D,n =0,D,,Dy,),
EP (ks A b,C,D,n=0,D, D;) and E;fl(k3,A, b,C,D,n = 0, D,, D) of the ground state as:

EgPy(ky, A,b,C,D,n = 0,D,,Dy)
0
= =Y Coo k1 (1 = 0) {0T01(b' C,D,n =0,D,,Dyo) — ZTAI-(H =0, Dz,D1o)}
E;‘gm(kz,A, b! C,D,n=0, D21D10)

6
= _yCOOZkZ(l = 0) {6T01(bt C, D;n = 0) DZ; DIO) - ZTS(‘”’ = 01 DZ) DIO)}
Escfl(k3,A, b,C,D,n = 0,D,,Dy0) =

]
_yCOOZk?)(l = O) {QTOI(bJ CI Dln = O, Dz, DlO) - ZTS(n = O, Dz, DlO)} (35)
with
TOl(bi C,D,n = O,Dz, DlO) = Tl(b,n = O,Dz,Dlo) + Tz(C,n = 01D21D10) + T3(D,n =
0, Dy, D1o).

For the first excited state, the expressions of the 4-factorsTi(i = ﬂ) are given by:
Tl(b, n= 1, Dz, Dll) =

b t*
_] {a127"/11_4_1 exp(—p1r) + 3127"/11_2_1 exp(—pyir) — 2P art=31 eXP(_,Bﬂ”)}dT
0

’ T,(C,n=1,D,,D{;) =
gj()+w{a12r'11_2_1 exp(—pir) + B’ Lexp(—pir) — 2B ar M7 exp(—yr) Jdr
T;(D,n=1,D,,D;;) =
-D j+w{a127”'11_1_1 exp(—pir) + By *rM 1 exp(=Bir) — 2B ayrM? exp(—pyr)}dr
0

T,(n=1,D,,Dy;) =
- fo+oo{a127"11_1_1 exp(=pir) + B r1 ¥ L exp(=Bir) — 2B ayrhi Tt exp(=pir)}dr  (36)
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where D;; = —u (E1 —A- % + Z—Z) B1=22Dy1 , A = and a,; = A, — 2. Evaluating the
integral in Eq. (36) applies the special integration, which given by Eq. (33), we obtain the results:
b
Ty(b,n =1,D,,Dy4) = 5,31_114-4{“1211(11 —4)+ (A, —2) = 20,7 (1, — 3)}

c _
T,(C,n=1,D,,Dy4) = 5,31 Al+2{a1211@1 —2)+T'(A) — 2047 (A, + 1)}

T3(D,n=1,D,,Dy;) = _D,31_Al+1{a1211(l1 —D+I(A+1) —2a:'(44)}
= —DT4(TL = 1, Dz, Dll) (37)
Allows us the two to obtain the exact modlﬁcatlonsEsog(kl,C G,F,L,n=1,N,H,),
Egy (ks C,G,F,L,n=1,N,H;) and E.% (k3,C,G,F,L,n = 1,N, H,) of the first excited state:
Sog(k+,A b,C,D,n=1,D,,D;;)

0
= _ycllzkl(l) {QTll(n = 1IAI b: C; D; n, DZ; Dll) - _’u'Tél-(n = 11 N; Hl)}
E®,(k_,A,b,C,D,n=1D,Dy;)

0
= _yclleZ(l) {QTll(n = 1IAI b: C: D; n, DZ; Dll) - ZTél-(n = 1; N: Hl)}
SOl(k_’A b C D n= 1,D2,D11) =

—yCu’ks () {OTu1(n = 1,4,b,C,D,m, Dy, D1y) = 3= Ta(n = 1, N, Hy)} (38)
with
Ty1(b,C,D,n = 1,D5,Dy;) = Ty(b,n = 1,Dy,Dyy) + To(C,n = 1,05, Dy;) + T5(D,n =
1,D5,Dyy).

In the same way, we find the exact modifications Eg,, P (ki,b,C,D,n,Dy,Diy),

EP (ks b,C,D,n,D,,Dyy) and nggl(k3,b, C,D,n,D,,D;,) for n excited states of heavy
quarkonium system under new modified Cornell potential in global quantum group symmetry (3D-
NCSP):

0
sog(kl'b C,D,n,D,,D1y) = VCn12k1(l) {9T1n(n b,C,D,n, Dy, D1p) — ,uT4(n Dz:D1n)}

0
som(k2: C,D,n, Dz»D1n) = VCnlzkz(l) {9T1n(n b,C,D,n, DZ;Dln) #T4(n DZ;Dln)}

B, (s, b, C,D,1, Dy, Din) = = Coa*les (D {OT1n (1, b, €, 0,1, Dy, Dy = 5Ty, Dz, D)} (39)

with
Tln(n, b, C, D, n, Dz, Dln) = Tl(b, n, Dz, Dln) + Tz(C, n, Dz, Dln) + T3 (D, n, Dz, Dln)-

3.4 The exact modified magnetic spectrum for heavy quarkonium systems under NMCP in
pNRQCD

Further to the important previously obtained results, now, we consider another important physically
meaningful phenomenon produced by the effect of new modified Cornell potential at finite
temperature in perturbative NRQCD related to the influence of an external uniform magnetic field

B. To avoid the repetition in the theoretical calculations, it is sufficient to apply the following
replacements:

6 - )(§ and 6 > 5B (40)
Allow us to make the changes (— (z% + % - D) 0+ %) L by ( (2r3 o D))( + )BL.

Here y and o are two infinitesimal real proportional constants, and we choose the arbitrary unlform
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external magnetic field B parallel to the (Oz) axis. This choice allows us to introduce the new
modified magnetic Hamiltonian H,” (7, ¥, @) in 3D-NCSP symmetries as:

~ — b  C &
fﬁﬂnaeyew?@wmﬂ=—<Gﬁ+574ﬂx‘zﬁ mo “1)
Here 87,4 = B J — X, is the new Zeeman effect and X, = —§ B denote to Zeeman effect in

commutative quantum mechanics. To obtain the exact NC magnetic modifications of energy for the
ground state, the first excited state and n'* excited states of heavy quarkonium system
Cpg(m—o C,A,b,C,D,n=0,D,,D14), E;f,(m=0,4+1,A4,b,C,D,n=1,D,D;;)  and
mag (m =—1,+1,A,b,C,D,n, DZ,Dln) we just replace k4 (1) and O in the Egs. (35), (38) and (39)
by the following parameters m andy, respectively:
mag(m—OCAb C,D,n=0,D,,D;p) =0
mag(m— 0,+1,A,b,C,D,n =1,D,,Dy;)

= —yCy,° {)(Tll(n =1,A,b,C,D,n=1,D,,D;;) — ’uT4(n =1, DZ,Dll)}

Eb,(m==L+LAb,C,D,n,D,,Dy,) )
= —yCu” {XTin(n = 1,4,b,C,D,m, Dy, D1) = 2= Ty(n, Dy, i) | B (42)

We have (=1l < m < +1), which allows us to fix (2] + 1) values for discreet numbersm. It should
be noted that the results obtained in Eq. (42) could find it by direct calculation Empag =

((r,0,)|HE (1, x, ) |¥(r, 0, $))that takes the following explicit relation:

Erizpag = _VCnlsz
+o  __ N, n{ —op-N_ 2
fo r VHn " exp(2,/Hy,r) {(—rZ%) <r J"_nexp(—Z,/Hnr)>} <(%+%— D))(——) dr

(43)
Then we find the corrections produced by the operator H,' (r, y, o) for the ground state and other
excited states repeating the same calculations in the previous subsection.
4. Main Results

In the previous sub-sections, we obtained the solution of the modified Schrodinger equation for new
modified Cornell potential, which is given in Eq. (20) by using the generalized Bopp’s shift method
and standard perturbation theory in pNRQCD. The energy eigenvalue is calculated in a three-
dimensional noncommutative space phase. The modiﬁed eigenenergies (E,?Z —gr E}P_ ES ne— l)(n =
0,m=0,b,C,D, DZ,Dlo) (Ef—g B Erp_))(n = 1,(m = 0,£1),b,C, D, D5, Dy;) and
(E—g Eb—m Eno_t) (n,(m = =1, +1),b,C, D, Dy, Dy,) with spin-1 for MSE for heavy quarkonium
systems under NMCP at finite temperature are obtained in this paper based on our original results
presented on the Egs. (35), (38), (39), and (42), in addition to the ordinary energy E,; for modified
Cornell potential at a finite temperature which presented in Eq. (11):

nc g(n_om_Ob C,D,Dy,Dyo) = Ego
Ef_,.(n=0,m=0,bC,D,D, D) _
0
= EOO + ]/COOZ {QTlo(C,n = 0, b, C, D,n 1 Dz, DlO) - _#T4,(n 0 Dz, DlO)}

EP

nc—l

n = O,m = 0, b, C,D, D21D10) = EOO + ]/COOZ {@Tlo(c,n = 0, b, C,D,n = 1,D2,D10) -
0
+-Ta(n = 0,D;, Do)} (44)

and
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Enp_g(n=1,ky,(m=0,%+1),b,C,D,D,,D;,)
= Ey

- VC112 {(lﬁ(l =1)0 + yBm)T;1(n =1,b,C,D,n = 1,D;,Dy4)

7 o
- <— ki(l=1)+ ZBm> T,(n = 1;D2,D11)}
Enp_m(n =1k, (m=0,£1),b,C,D,D;,Dy,) = Ey; —yCy/°

{(kz(l = 1)@ +XBm)T11(n = 1, b, C, D,n = 1, DZ'Dll)

6
- <_k2(l = 1) + %Bm) T4(n = 1, Dz, Dll)}
Ee- l(n =1,k3,(m=0,£1),b,C,D szDll) Ey — VC112 {(ks(l =1)0 + yBm)T;;(n =

1,6,6,0,n = 1,0, D1,) = (5-k3(l = 1) + = Bm) Ty(n = 1,0, Dy)} (43)
and
EyP_,(nky,m =—1,+1,b,C,D,D;,Dy,) = Enl —yCy°

0
{(lﬁ(l)@ + )(Bm)Tn(n, b,C,D,n=1,D,, D11) - ( k1(l) +— 20 Bm> T4(n 1,D,, D11)}

EX_.(nk,m=—1,+Lb,C,D, DZ,Dll) Enl —yCp?

0
{(kz (D6 + xBm)T;;(n,b,C,D,n = 1,D,,Dy4) — ( ko(D) + > 20 Bm) Ty(n=1 DZ;Dll)}

EP (nksm= —1,+1,b,C,D DZ,Dll) En —yCy? {(kg(l)@ + yBm)T,;(n,b,C,D,n =

1,D3,Dq4) — (Z ks(D + %Bm) Ty(n = 1;D2;D11)} (46)
where E(, and E;; are the energy of ground state and first excited state of heavy quarkonium systems
in the symmetries of quantum mechanics under modified Cornell potential at finite temperature:

Y

Epw=Z—-—— and E,=2- ,
[3iJW+4((z+1/z)2—1/4)]

[1+vW]

(47)
with Y = 2#(5——+b) Z=4+Z-Zand w=1+2%1-
objectives of our research and by notlng that the obtained elgenvalues of energies are real’s and then
the NC diagonal Hamiltonian H, P (x#, pu) 1s Hermitian, furthermore, it’s possible to write the three
elements (Hfli’)n, (H,?CJ - and ( nc)qq 35 follows:

24 ’;—Z. This is one of the main

(Hre),, 0 0
Hep (x#, pu) — Hye (xw pu) 0 (Hcp 0 (48)
0 0 (Hne),,
where
(1), = =2 + G,
A
(HD), = - Z +HP,

(HCP — _4nc 4 polep,
21
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Do 5
. Apc _ A-0L-0L gcp pymep pylcp
with === int 'Hmt , Hmt

2 ) are given by:

and the three modified interactions elements (H

HIP = a(T,")r — b(T r)

int

+ (k1 (DO + XRmoa ) (55 + 5= D)
+ (k2 (DO + x¥moa -2) (55 + 2 — D) (49)
+y(ks (DO + XNmoa ) (575 + Z—i— D)

Thus, the ordinary kinetic term for Cornell potential (— Z) and ordinary interaction a(T,r)r —
b(T,r)
T

b(T )

Vep(r) = H:pr =a(T,r)r —

b(T r)

H? = o(T,r)r —

int

. o 4 . . .
are replaced by a new modified form of the kinetic term ZL; and new modified interactions

modified to the new form (H 9P gL and HP ) in 3D-NCSP symmetries. On the other hand, it is

int ’ " lint int
evident to consider the quantum number m takes (21 + 1) values and we have also two values

for(j = [ + 1, 1), thus every state in usually three-dimensional space of energy for heavy quarkonium
system under NMCP will be 3(2(2l + 1))sub-states. To obtain the total complete degeneracy of
energy level of the modified Cornell potential in 3D-NCSP symmetries, we need to sum for all
allowed values of [. Total degeneracy is thus,

237120+ 1) = 2n2 -» 32X (21 + 1)) = 6n? (50)

Note that the obtained new energy eigenvalues (Epb_j, Enb—pm, Ene_;)(n, (m =

-1, +l), b,C,D,D,, Dln) now depend on new discrete atomic quantum numbers (n, j, [, s) andm in
addition to the parameters (b, C, D)of the modified Cornell potential. It is pertinent to note that when
the atoms have spin — 0, the total operator can be determined from the interval|l —s| <j < |l + s|,
which allows us to obtain the eigenvalues of the operator (J? — L?> — §%) as k(j,1,s) = 0 and then

the nonrelativistic energy spectrum (Epb_;, Enb_m, Ene_,)(n, (m = —1,+1),b,C, D, D,, Dy,,) reads:

(Enc -9’ Epe-m Ene- l)(n (m ==, +l) b,C,D, D21D1n) =
Enl - ndl {XTln(llml b: C;D: DZI Dln) - ETAI-(nI DZ;Dln)} Bm (51)

One of the most important applications, in the extended model of pNRQCD, is to calculate the
modified mass spectra of the heavy quarkonium systems (the mass of the quarkonium bound state),
such as charmonium and bottomonium mesons, that have the quark and antiquark flavor in the
symmetries of NCSP under NMCP at finite temperature. To achieve this goal, we generalize the
traditional formula M = 2m + E,;; to the new form:
M =2m+E, - M =2m
+ (Enc gt Em n+EY_)(n(m=-1+1),b,CD,D,y D) (52)

nc—l

here m is the bare mass of quarkonium or twice the reduced mass of the system. Moreover,
= (EnC gt Enbm +Eb_ )(n,(m=—=1,+1),b,C,D,D,,Dy,) it is the non-polarized energies,
whlch can determine from Eqgs. (46) and (51). Thus, at finite temperature T # 0, the modified mass
of the quarkonium system M,” we obtain:
Mpe = M = yCy/*
I+4 T 0 .
{{(){Bm — 226 +)Ty1(n,b,C, D, Dy, Dyy) — (‘;Bm —(+4) E) Ty(n, Dy, D1;)} For spin — 1

(53)
{XTln(lJ m, b; CJ D; DZJ Dln) _ET4(n; DZ, Dln)} Bm FOI‘ Spln - 0
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Here M is the heavy quarkonium system at a finite temperature under modified Cornell potential in
commutative quantum mechanics, which is defined in [11]. If we consider (0, y) — (0,0), we recover
the results of the commutative space of the ref. [11] obtained for the modified Cornell potential, which
means that our calculations are correct. Our obtained results are in good agreement with the already
existing literature in NRNCSP symmetries [35]. The novelty in this work is that the generalized
Bopp’s shift method successfully applies to find the solution of the 3-radial modified Schrédinger
Equation at finite temperature in the symmetries of NRNCSP.

5. Conclusion

In the present work, the 3-dimensional modified Schrodinger equation is analytically solved
using the generalized Bopp’s shift method and standard perturbation theory. The modified Cornell
potential at finite temperature is extended to include the effect of the noncommutativity space phase
based on Refs. [11-12]; we resume the main obtained results:

o Ordinary modified Cornell potential at finite temperature (A(T, r)r — —) were replaced by
new modified interactions HZ?, H™'? and H,? for heavy quarkonium systems,

o The ordinary kinetic term —2‘;“ modified to the new form AZ—’LC = # for heavy
quarkonium system under influence of new modified Cornell model at finite temperature

. We  obtained  the perturbative corrections  (Ept_ g, Enb_m, Enp_)(n=0,m =
0 b C D Dz, DlO) (EDC -g IlC m’ IlC l)(n = 1 (m = O +1) b C D Dz, Dll) and

(ExP_ Py nc mw Erb_)(n, (m=—, +l) b,C,D, Dy, Dyy,) for the ground state, the first excited state

and the nt"excited state with (spin—1 and spin — 0) for heavy quarkonium system under influence
of new modified Cornell model at finite temperature is obtained.

. We have obtained at a finite temperature (T # 0) the modified mass of the quarkonium system
M which equal the sum of corresponding value M in CQM and two perturbative terms proportional
with two parameters (6 and 5).

Through the high-value results, which we have achieved in the present work, we hope to extend our
recently work physics for further investigations of elementary particles physics and other
characteristics of quarkonium at a finite temperature [11] among others.
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