Comparative Effects of Chemical Pretreatments on Mechanical Properties of Sustainable Rubberized Concrete

Article Preview

Abstract:

Chemical pretreatments are known to have significant influence over mechanical properties of concrete and being able to quantify the effect of chemical pretreatments will be of great help in trying to anticipate the rubberized concrete’s possible mechanical properties. This paper presents an experimental study that was conducted on cylindrical concrete samples prepared by using different proportions of natural coarse aggregates (NCAs) replaced by pretreated; with different concentrations of chemicals, rubber coarse aggregates (RCAs). The aim was to ameliorate the mechanical properties of concrete using sustainable alternative; rubber coarse aggregate. After chemical treatment, washing and air drying, RCAs were first coated with cement paste and then dried and cured for 28 days to enhance their bonding behavior in concrete. The results confirmed the efficiency of pretreated RCAs, in improving the mechanical properties of rubberizes concrete especially the compressive strength. Key words: Compressive strength, Rubber coarse aggregates, Rubberized concrete, Pretreatment, Sustainability corresponding author: pc.ahmadali@gmail.com

Info:

* - Corresponding Author

[1] Al-Akhras, N. M., & Smadi, M. M. (2004). Properties of tire rubber ash mortar. Cement and Concrete Composites, 26(7), 821–826. https://doi.org/https://doi.org/10.1016/j.cemconcomp. 2004.01.004

DOI: 10.1016/j.cemconcomp.2004.01.004

Google Scholar

[2] Albano, C., Camacho, N., Reyes, J., Feliu, J. L., & Hernández, M. (2005). Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Composite Structures, 71(3), 439–446. https://doi.org/https://doi.org/10.1016/j.compstruct. 2005.09.037

DOI: 10.1016/j.compstruct.2005.09.037

Google Scholar

[3] Astm, A. S. for T. and M. (2007). Standard Test Method for Density , Relative Density ( Specific Gravity ), and Absorption, 1–7

Google Scholar

[4] ASTM C143/C143M. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. Astm C143, (1), 1–4

Google Scholar

[5] ASTM C150/C150M. (2017). Standard specification for Portland cement. ASTM International, 552(d), 9

DOI: 10.1520/C0150

Google Scholar

[6] ASTM D 4791-10. (2011). Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. Annual Book of American Society for Testing Materiasl ASTM Standards, 6–11

Google Scholar

[7] Batayneh, M. K., Marie, I., & Asi, I. (2008). Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(11), 2171–2176.

DOI: 10.1016/j.wasman.2007.09.035

Google Scholar

[8] Bravo, M., & de Brito, J. (2012). Concrete made with used tyre aggregate: durability-related performance. Journal of Cleaner Production, 25, 42–50. https://doi.org/

DOI: 10.1016/j.jclepro.2011.11.066

Google Scholar

[9] Colom, X., Carrillo, F., & Cañavate, J. (2007). Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility. Composites Part A: Applied Science and Manufacturing, 38(1), 44–50. https://doi.org/ https://doi.org/10.1016/j. compositesa.2006.01.022

DOI: 10.1016/j.compositesa.2006.01.022

Google Scholar

[10] Corinaldesi, V., Mazzoli, A., & Moriconi, G. (2011). Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles. Materials & Design, 32(3), 1646–1650. https://doi.org/

DOI: 10.1016/j.matdes.2010.10.013

Google Scholar

[11] Dattatreya, J. K., & E, S. S. R. N. (2015). Experimental investigation of crumb rubber concrete confined by FRP sheets, 2(9), 63–67.

Google Scholar

[12] de Brito, J., & Saikia, N. (2013). Recycled Aggregate in Concrete

DOI: 10.1007/978-1-4471-4540-0

Google Scholar

[13] Dixon, D. E., Prestrera, J. R., Crocker, D. A., Day, K. W., Dodl, C. L., Fox, T. A., … Costa, W. J. (2002). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91). Concrete, (Reapproved), 1–38.

Google Scholar

[14] Dobrot, D., & Dobrot, G. (2016). An innovative method in the regeneration of waste rubber and the sustainable development. Journal of Cleaner Production

DOI: 10.1016/j.jclepro.2017.03.022

Google Scholar

[15] Documents, A. (2011). Specific gravity and absorption of fine aggregate, 0(2004), 1–9.

Google Scholar

[16] Elchalakani, M. (2018). High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. Structures, 1, 20–38. https://doi.org/10.1016/ j.istruc.2014.06.001

DOI: 10.1016/j.istruc.2014.06.001

Google Scholar

[17] Etrma. (2011). End of life tyres. End of Life Tyres - a Valuable Resource with Growing Potential.

Google Scholar

[18] Fleming, A., Wise, R. M., Hansen, H., & Sams, L. (2017). The sustainable development goals: A case study. Marine Policy, 86(September), 94–103. https://doi.org/10.1016/ j.marpol.2017.09.019

DOI: 10.1016/j.marpol.2017.09.019

Google Scholar

[19] Ganjian, E., Khorami, M., & Maghsoudi, A. A. (2009). Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials, 23(5), 1828–1836

DOI: 10.1016/j.conbuildmat.2008.09.020

Google Scholar

[20] Gesoğlu, M., Güneyisi, E., Ozturan, T., & Özbay, E. (2010). Modeling the mechanical properties of rubberized concretes by neural network and genetic programming. Materials and Structures (Vol. 43)

DOI: 10.1617/s11527-009-9468-0

Google Scholar

[21] June, J., Politecnica, U., Sgobba, S., Marano, G. C., Borsa, M., & Molfetta, M. (2010). Use of Rubber Particles from Recycled Tires as Concrete Aggregate for Engineering Applications, i.

Google Scholar

[22] K., K. Z., & M., B. F. (1999). Rubberized Portland Cement Concrete. Journal of Materials in Civil Engineering, 11(3), 206–213

DOI: 10.1061/(ASCE)0899-1561(1999)11:3(206)

Google Scholar

[23] Khaloo, A. R., Dehestani, M., & Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Management, 28(12), 2472–2482

DOI: 10.1016/j.wasman.2008.01.015

Google Scholar

[24] Li, G., Garrick, G., Eggers, J., Abadie, C., Stubblefield, M. A., & Pang, S. S. (2004). Waste tire fiber modified concrete. Composites Part B: Engineering, 35(4), 305–312

DOI: 10.1016/j.compositesb.2004.01.002

Google Scholar

[25] Ling, T.-C. (2012). Effects of compaction method and rubber content on the properties of concrete paving blocks. Construction and Building Materials, 28(1), 164–175. https://doi.org/

DOI: 10.1016/j.conbuildmat.2011.08.069

Google Scholar

[26] Ling, T.-C., Poon, C.-S., & Kou, S.-C. (2011). Feasibility of using recycled glass in architectural cement mortars. Cement and Concrete Composites, 33(8), 848–854. https://doi.org/

DOI: 10.1016/j.cemconcomp.2011.05.006

Google Scholar

[27] Liu, F., Zheng, W., Li, L., Feng, W., & Ning, G. (2013). Mechanical and fatigue performance of rubber concrete. Construction and Building Materials, 47, 711–719. https://doi.org/

DOI: 10.1016/j.conbuildmat.2013.05.055

Google Scholar

[28] M., R. T. M., S., E.-D. A., A., A. E.-W. M., & E., A.-H. M. (2008). Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete. Journal of Materials in Civil Engineering, 20(10), 640–649

DOI: 10.1061/(ASCE)0899-1561(2008)20:10(640)

Google Scholar

[29] Marques, A. C., Akasaki, J. L., Trigo, A. P. M., & Marques, M. L. (2008). Influence of the surface treatment of tire rubber residues added in mortars Influência do tipo de tratamento da superfície de resíduos, 1(2), 113–120.

DOI: 10.1590/s1983-41952008000200001

Google Scholar

[30] Mass, O., Mass, S., Immersion, A., Mass, S., Boiling, A., & Mass, I. A. (2006). Standard Test Method for Density , Absorption , and Voids in Hardened Concrete 1, (4), 8–10.

Google Scholar

[31] Mavroulidou, M., & Figueiredo, J. (2010). Discarded Tyre Rubber As Concrete Aggregate : a Possible Outlet for Used Tyres, 12(4), 359–367.

DOI: 10.30955/gnj.000617

Google Scholar

[32] Mohammed, B. S., Adamu, M., & Shafiq, N. (2017). A review on the effect of crumb rubber on the properties of rubbercrete. International Journal of Civil Engineering and Technology, 8(9).

Google Scholar

[33] Nadal Gisbert, A., Gadea Borrell, J. M., Parres García, F., Juliá Sanchis, E., Crespo Amorós, J. E., Segura Alcaraz, J., & Salas Vicente, F. (2014). Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar. Construction and Building Materials, 50, 671–682. https://doi.org/https://doi.org/10.1016/j.conbuildmat. 2013.10.018

DOI: 10.1016/j.conbuildmat.2013.10.018

Google Scholar

[34] Najim, K., & Hall, M. (2013). Crumb rubber aggregate coatings/ pre-treatments and their effects on interfacial bonding, air entrapment and fracture toughness in self-compacting rubberised concrete (SCRC). Materials and Structures (Vol. 46)

DOI: 10.1617/s11527-013-0034-4

Google Scholar

[35] Onuaguluchi, O., & Panesar, D. K. (2014). Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. Journal of Cleaner Production, 82, 125–131. https://doi.org/

DOI: 10.1016/j.jclepro.2014.06.068

Google Scholar

[36] Pacheco-Torgal, F., Ding, Y., & Jalali, S. (2012). Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview. Construction and Building Materials, 30, 714–724. https://doi.org/https://doi.org/10.1016/ j.conbuildmat.2011.11.047

DOI: 10.1016/j.conbuildmat.2011.11.047

Google Scholar

[37] Pepe, M. (2015). A Conceptual Model for Designing Recycled Aggregate Concrete for Structural Applications, 7–17

DOI: 10.1007/978-3-319-26473-8

Google Scholar

[38] Raj, B., Ganesan, N., & Shashikala, A. P. (2011). Engineering properties of self-compacting rubberized concrete. Journal of Reinforced Plastics and Composites, 30(23), 1923–1930

DOI: 10.1177/0731684411431356

Google Scholar

[39] Rana Hashim Ghedan Dina Mukheef Hamza. (2011). Effect Of Rubber Treatment On Compressive Strength And Thermal Conductivity Of Modified Rubberized Concrete. Journal Of Engineering And Development, 15(1813–7822), 8.

Google Scholar

[40] Rashad, A. M. (2016). A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. International Journal of Sustainable Built Environment, 5(1), 46–82

DOI: 10.1016/j.ijsbe.2015.11.003

Google Scholar

[41] Sancak, E., Dursun Sari, Y., & Simsek, O. (2008). Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cement and Concrete Composites, 30(8), 715–721. https://doi.org/

DOI: 10.1016/j.cemconcomp.2008.01.004

Google Scholar

[42] Segre, N., & Joekes, I. (2000). Use of tire rubber particles as addition to cement paste. Cement and Concrete Research, 30(9), 1421–1425. https://doi.org/

DOI: 10.1016/S0008-8846(00)00373-2

Google Scholar

[43] Siddique, R., & Naik, T. R. (2004). Properties of concrete containing scrap-tire rubber - An overview. Waste Management, 24(6), 563–569

DOI: 10.1016/j.wasman.2004.01.006

Google Scholar

[44] Snelson, D. G., Kinuthia, J. M., Davies, P. A., & Chang, S. R. (2009). Sustainable construction: Composite use of tyres and ash in concrete. Waste Management, 29(1), 360–367

DOI: 10.1016/j.wasman.2008.06.007

Google Scholar

[45] Sohrabi, M. R., & Karbalaie, M. (2011). An experimental study on compressive strength of concrete containing crumb rubber. Int J Civ Environ Eng (Vol. 11).

Google Scholar

[46] Statements, B., & Ag-, C. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates 1, 4, 1–5

DOI: 10.1520/C0136

Google Scholar

[47] Struble, L., & Godfrey, J. (2004). How Sustainable Is Concrete ? Proceedings of the International Workshop on Sustainable Development and Concrete Technology, 201–211.

Google Scholar

[48] Su, H., Yang, J., Ghataora, G., & Dirar, S. (2015). Surface modified used rubber tyre aggregates: Effect on recycled concrete performance. Magazine of Concrete Research (Vol. 67)

DOI: 10.1680/macr.14.00255

Google Scholar

[49] Test, C. C., Content, A., Rooms, M., & Concrete, P. (2002). Standard Practice for Making and Curing Concrete Test Specimens in the. Concrete, 4, 1–8

Google Scholar

[50] Test, C. C., Drilled, T., Test, C. C., & Statements, B. (2014). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 1, 4(October), 3–9

Google Scholar

[51] Wang, H.-Y., Chen, B.-T., & Wu, Y.-W. (2013). A study of the fresh properties of controlled low-strength rubber lightweight aggregate concrete (CLSRLC). Construction and Building Materials, 41, 526–531. https://doi.org/

DOI: 10.1016/j.conbuildmat.2012.11.113

Google Scholar

[52] Yazdi, M. A., Yang, J., Yihui, L., & Su, H. (2015). A Review on Application of Waste Tire in Concrete. International Journal of Civil of Civil, Environment, Structural, Construction and Architecture Engineering, 9(12), 1555–1560.

Google Scholar

[53] Youssf, O., Hassanli, R., & Mills, J. E. (2017). Mechanical performance of FRP-confined and unconfined crumb rubber concrete containing high rubber content. Journal of Building Engineering, 11(April), 115–126

DOI: 10.1016/j.jobe.2017.04.011

Google Scholar