[1]
Al-Akhras, N. M., & Smadi, M. M. (2004). Properties of tire rubber ash mortar. Cement and Concrete Composites, 26(7), 821–826. https://doi.org/https://doi.org/10.1016/j.cemconcomp. 2004.01.004
DOI: 10.1016/j.cemconcomp.2004.01.004
Google Scholar
[2]
Albano, C., Camacho, N., Reyes, J., Feliu, J. L., & Hernández, M. (2005). Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Composite Structures, 71(3), 439–446. https://doi.org/https://doi.org/10.1016/j.compstruct. 2005.09.037
DOI: 10.1016/j.compstruct.2005.09.037
Google Scholar
[3]
Astm, A. S. for T. and M. (2007). Standard Test Method for Density , Relative Density ( Specific Gravity ), and Absorption, 1–7
Google Scholar
[4]
ASTM C143/C143M. (2015). Standard Test Method for Slump of Hydraulic-Cement Concrete. Astm C143, (1), 1–4
Google Scholar
[5]
ASTM C150/C150M. (2017). Standard specification for Portland cement. ASTM International, 552(d), 9
DOI: 10.1520/C0150
Google Scholar
[6]
ASTM D 4791-10. (2011). Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. Annual Book of American Society for Testing Materiasl ASTM Standards, 6–11
Google Scholar
[7]
Batayneh, M. K., Marie, I., & Asi, I. (2008). Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(11), 2171–2176.
DOI: 10.1016/j.wasman.2007.09.035
Google Scholar
[8]
Bravo, M., & de Brito, J. (2012). Concrete made with used tyre aggregate: durability-related performance. Journal of Cleaner Production, 25, 42–50. https://doi.org/
DOI: 10.1016/j.jclepro.2011.11.066
Google Scholar
[9]
Colom, X., Carrillo, F., & Cañavate, J. (2007). Composites reinforced with reused tyres: Surface oxidant treatment to improve the interfacial compatibility. Composites Part A: Applied Science and Manufacturing, 38(1), 44–50. https://doi.org/ https://doi.org/10.1016/j. compositesa.2006.01.022
DOI: 10.1016/j.compositesa.2006.01.022
Google Scholar
[10]
Corinaldesi, V., Mazzoli, A., & Moriconi, G. (2011). Mechanical behaviour and thermal conductivity of mortars containing waste rubber particles. Materials & Design, 32(3), 1646–1650. https://doi.org/
DOI: 10.1016/j.matdes.2010.10.013
Google Scholar
[11]
Dattatreya, J. K., & E, S. S. R. N. (2015). Experimental investigation of crumb rubber concrete confined by FRP sheets, 2(9), 63–67.
Google Scholar
[12]
de Brito, J., & Saikia, N. (2013). Recycled Aggregate in Concrete
DOI: 10.1007/978-1-4471-4540-0
Google Scholar
[13]
Dixon, D. E., Prestrera, J. R., Crocker, D. A., Day, K. W., Dodl, C. L., Fox, T. A., … Costa, W. J. (2002). Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91). Concrete, (Reapproved), 1–38.
Google Scholar
[14]
Dobrot, D., & Dobrot, G. (2016). An innovative method in the regeneration of waste rubber and the sustainable development. Journal of Cleaner Production
DOI: 10.1016/j.jclepro.2017.03.022
Google Scholar
[15]
Documents, A. (2011). Specific gravity and absorption of fine aggregate, 0(2004), 1–9.
Google Scholar
[16]
Elchalakani, M. (2018). High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. Structures, 1, 20–38. https://doi.org/10.1016/ j.istruc.2014.06.001
DOI: 10.1016/j.istruc.2014.06.001
Google Scholar
[17]
Etrma. (2011). End of life tyres. End of Life Tyres - a Valuable Resource with Growing Potential.
Google Scholar
[18]
Fleming, A., Wise, R. M., Hansen, H., & Sams, L. (2017). The sustainable development goals: A case study. Marine Policy, 86(September), 94–103. https://doi.org/10.1016/ j.marpol.2017.09.019
DOI: 10.1016/j.marpol.2017.09.019
Google Scholar
[19]
Ganjian, E., Khorami, M., & Maghsoudi, A. A. (2009). Scrap-tyre-rubber replacement for aggregate and filler in concrete. Construction and Building Materials, 23(5), 1828–1836
DOI: 10.1016/j.conbuildmat.2008.09.020
Google Scholar
[20]
Gesoğlu, M., Güneyisi, E., Ozturan, T., & Özbay, E. (2010). Modeling the mechanical properties of rubberized concretes by neural network and genetic programming. Materials and Structures (Vol. 43)
DOI: 10.1617/s11527-009-9468-0
Google Scholar
[21]
June, J., Politecnica, U., Sgobba, S., Marano, G. C., Borsa, M., & Molfetta, M. (2010). Use of Rubber Particles from Recycled Tires as Concrete Aggregate for Engineering Applications, i.
Google Scholar
[22]
K., K. Z., & M., B. F. (1999). Rubberized Portland Cement Concrete. Journal of Materials in Civil Engineering, 11(3), 206–213
DOI: 10.1061/(ASCE)0899-1561(1999)11:3(206)
Google Scholar
[23]
Khaloo, A. R., Dehestani, M., & Rahmatabadi, P. (2008). Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Management, 28(12), 2472–2482
DOI: 10.1016/j.wasman.2008.01.015
Google Scholar
[24]
Li, G., Garrick, G., Eggers, J., Abadie, C., Stubblefield, M. A., & Pang, S. S. (2004). Waste tire fiber modified concrete. Composites Part B: Engineering, 35(4), 305–312
DOI: 10.1016/j.compositesb.2004.01.002
Google Scholar
[25]
Ling, T.-C. (2012). Effects of compaction method and rubber content on the properties of concrete paving blocks. Construction and Building Materials, 28(1), 164–175. https://doi.org/
DOI: 10.1016/j.conbuildmat.2011.08.069
Google Scholar
[26]
Ling, T.-C., Poon, C.-S., & Kou, S.-C. (2011). Feasibility of using recycled glass in architectural cement mortars. Cement and Concrete Composites, 33(8), 848–854. https://doi.org/
DOI: 10.1016/j.cemconcomp.2011.05.006
Google Scholar
[27]
Liu, F., Zheng, W., Li, L., Feng, W., & Ning, G. (2013). Mechanical and fatigue performance of rubber concrete. Construction and Building Materials, 47, 711–719. https://doi.org/
DOI: 10.1016/j.conbuildmat.2013.05.055
Google Scholar
[28]
M., R. T. M., S., E.-D. A., A., A. E.-W. M., & E., A.-H. M. (2008). Mechanical, Fracture, and Microstructural Investigations of Rubber Concrete. Journal of Materials in Civil Engineering, 20(10), 640–649
DOI: 10.1061/(ASCE)0899-1561(2008)20:10(640)
Google Scholar
[29]
Marques, A. C., Akasaki, J. L., Trigo, A. P. M., & Marques, M. L. (2008). Influence of the surface treatment of tire rubber residues added in mortars Influência do tipo de tratamento da superfície de resíduos, 1(2), 113–120.
DOI: 10.1590/s1983-41952008000200001
Google Scholar
[30]
Mass, O., Mass, S., Immersion, A., Mass, S., Boiling, A., & Mass, I. A. (2006). Standard Test Method for Density , Absorption , and Voids in Hardened Concrete 1, (4), 8–10.
Google Scholar
[31]
Mavroulidou, M., & Figueiredo, J. (2010). Discarded Tyre Rubber As Concrete Aggregate : a Possible Outlet for Used Tyres, 12(4), 359–367.
DOI: 10.30955/gnj.000617
Google Scholar
[32]
Mohammed, B. S., Adamu, M., & Shafiq, N. (2017). A review on the effect of crumb rubber on the properties of rubbercrete. International Journal of Civil Engineering and Technology, 8(9).
Google Scholar
[33]
Nadal Gisbert, A., Gadea Borrell, J. M., Parres García, F., Juliá Sanchis, E., Crespo Amorós, J. E., Segura Alcaraz, J., & Salas Vicente, F. (2014). Analysis behaviour of static and dynamic properties of Ethylene-Propylene-Diene-Methylene crumb rubber mortar. Construction and Building Materials, 50, 671–682. https://doi.org/https://doi.org/10.1016/j.conbuildmat. 2013.10.018
DOI: 10.1016/j.conbuildmat.2013.10.018
Google Scholar
[34]
Najim, K., & Hall, M. (2013). Crumb rubber aggregate coatings/ pre-treatments and their effects on interfacial bonding, air entrapment and fracture toughness in self-compacting rubberised concrete (SCRC). Materials and Structures (Vol. 46)
DOI: 10.1617/s11527-013-0034-4
Google Scholar
[35]
Onuaguluchi, O., & Panesar, D. K. (2014). Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. Journal of Cleaner Production, 82, 125–131. https://doi.org/
DOI: 10.1016/j.jclepro.2014.06.068
Google Scholar
[36]
Pacheco-Torgal, F., Ding, Y., & Jalali, S. (2012). Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview. Construction and Building Materials, 30, 714–724. https://doi.org/https://doi.org/10.1016/ j.conbuildmat.2011.11.047
DOI: 10.1016/j.conbuildmat.2011.11.047
Google Scholar
[37]
Pepe, M. (2015). A Conceptual Model for Designing Recycled Aggregate Concrete for Structural Applications, 7–17
DOI: 10.1007/978-3-319-26473-8
Google Scholar
[38]
Raj, B., Ganesan, N., & Shashikala, A. P. (2011). Engineering properties of self-compacting rubberized concrete. Journal of Reinforced Plastics and Composites, 30(23), 1923–1930
DOI: 10.1177/0731684411431356
Google Scholar
[39]
Rana Hashim Ghedan Dina Mukheef Hamza. (2011). Effect Of Rubber Treatment On Compressive Strength And Thermal Conductivity Of Modified Rubberized Concrete. Journal Of Engineering And Development, 15(1813–7822), 8.
Google Scholar
[40]
Rashad, A. M. (2016). A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. International Journal of Sustainable Built Environment, 5(1), 46–82
DOI: 10.1016/j.ijsbe.2015.11.003
Google Scholar
[41]
Sancak, E., Dursun Sari, Y., & Simsek, O. (2008). Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer. Cement and Concrete Composites, 30(8), 715–721. https://doi.org/
DOI: 10.1016/j.cemconcomp.2008.01.004
Google Scholar
[42]
Segre, N., & Joekes, I. (2000). Use of tire rubber particles as addition to cement paste. Cement and Concrete Research, 30(9), 1421–1425. https://doi.org/
DOI: 10.1016/S0008-8846(00)00373-2
Google Scholar
[43]
Siddique, R., & Naik, T. R. (2004). Properties of concrete containing scrap-tire rubber - An overview. Waste Management, 24(6), 563–569
DOI: 10.1016/j.wasman.2004.01.006
Google Scholar
[44]
Snelson, D. G., Kinuthia, J. M., Davies, P. A., & Chang, S. R. (2009). Sustainable construction: Composite use of tyres and ash in concrete. Waste Management, 29(1), 360–367
DOI: 10.1016/j.wasman.2008.06.007
Google Scholar
[45]
Sohrabi, M. R., & Karbalaie, M. (2011). An experimental study on compressive strength of concrete containing crumb rubber. Int J Civ Environ Eng (Vol. 11).
Google Scholar
[46]
Statements, B., & Ag-, C. (2015). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates 1, 4, 1–5
DOI: 10.1520/C0136
Google Scholar
[47]
Struble, L., & Godfrey, J. (2004). How Sustainable Is Concrete ? Proceedings of the International Workshop on Sustainable Development and Concrete Technology, 201–211.
Google Scholar
[48]
Su, H., Yang, J., Ghataora, G., & Dirar, S. (2015). Surface modified used rubber tyre aggregates: Effect on recycled concrete performance. Magazine of Concrete Research (Vol. 67)
DOI: 10.1680/macr.14.00255
Google Scholar
[49]
Test, C. C., Content, A., Rooms, M., & Concrete, P. (2002). Standard Practice for Making and Curing Concrete Test Specimens in the. Concrete, 4, 1–8
Google Scholar
[50]
Test, C. C., Drilled, T., Test, C. C., & Statements, B. (2014). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens 1, 4(October), 3–9
Google Scholar
[51]
Wang, H.-Y., Chen, B.-T., & Wu, Y.-W. (2013). A study of the fresh properties of controlled low-strength rubber lightweight aggregate concrete (CLSRLC). Construction and Building Materials, 41, 526–531. https://doi.org/
DOI: 10.1016/j.conbuildmat.2012.11.113
Google Scholar
[52]
Yazdi, M. A., Yang, J., Yihui, L., & Su, H. (2015). A Review on Application of Waste Tire in Concrete. International Journal of Civil of Civil, Environment, Structural, Construction and Architecture Engineering, 9(12), 1555–1560.
Google Scholar
[53]
Youssf, O., Hassanli, R., & Mills, J. E. (2017). Mechanical performance of FRP-confined and unconfined crumb rubber concrete containing high rubber content. Journal of Building Engineering, 11(April), 115–126
DOI: 10.1016/j.jobe.2017.04.011
Google Scholar