Growth and Mineral Constituents’ Variations in Halophytic Species under Salinity

Article Preview

Abstract:

The present investigation was made to study the effect of different concentrations of sodium chloride on the growth and mineral constituents in different parts of Clerodendron inerme. The plant and could survive a wide range of 100-1000 mM of NaCl. The upper limit for the survival of Clerodendron inerme was 500 mM NaCl. However, favourable growth response by seedlings was confined to 200 mM NaCl. The morphological parameters such as shoot and length, number of leaves, total leaf area, fresh and dry mass and mineral constituents such as sodium, potassium and calcium were assessed.

Info:

Pages:

24-34

Citation:

Online since:

February 2014

Export:

Share:

Citation:

* - Corresponding Author

[1] S.I. Allakhaverdiev, A. Skamoto, Y. Nishiyama, M. Inaba, N. Murata, Plant Physiol 123(2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in synechococcus sp Plant Physiol, 123: 1047-1056.

DOI: 10.1104/pp.123.3.1047

Google Scholar

[2] Ayala, F. and J.W. O'Leary, 1995. Growth and physiology of Salicornia bigelovii Torr. at sub optimal salinity. Ind. J. Plant Sci, 156: 197-205.

DOI: 10.1086/297241

Google Scholar

[3] Ball, M.C. and G.D. Farquhar, 1984. Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina to long term salinity and humidity conditions. Plant Physiol, 62: 889-893.

DOI: 10.1104/pp.74.1.1

Google Scholar

[4] Bhosale, L.J. and N.G. Malik, 1991. Strategies of seed germination in mangroves Proc. In turn Seed Symposium. Pp. 201-205.

Google Scholar

[5] Bilquees, G., D.J. Weber and M.A. Khan, 2000. Effect of salinity and planting density and physiological responses of Allenrolfea occidentalis. Western north American Naturalist. 60: 188-197.

Google Scholar

[6] Borax, C. 2002. Boran from the USA. Website www.borax.com/ agriculture.

Google Scholar

[7] Brownell, P.F. 1979. Sodium as an essential micronutrient element for plants and its possible role in metabolism. Adv. Bot. Res, 7: 117-224.

Google Scholar

[8] Clipson, N.J.W. 1987. Salt tolerance in the halophyte Suaeda maritima L. Dum. Growth, ion and water relations and gas exchange in response to altered salinity. J. Exp. Bot, 38: 1996-2004.

DOI: 10.1093/jxb/38.12.1996

Google Scholar

[9] Clough, B.F. 1984. Growth and salt balance of the mangroves Avicennia marina (Forsk). Vierh and Rhizophora stylosa Griff. In relation to salinity. Aust. J. Plant Physiol, 11: 419-430.

DOI: 10.1071/pp9840419

Google Scholar

[10] Demirnal, M.A., M. Aydin, and A. Yorulmaz, 2005. Effect of salinity on growth chemical composition and antioxidative enzyme activity of two malting barley (Hordeum vulgare L.) cultivars. Turk. J. Biol, 29: 117-123.

Google Scholar

[11] Downton, W.J.S. 1982. Growth and osmotic relations of the mangrove Avicennia marina as influenced by salinity. Aust. J. Biol. Sci. pp.519-528.

DOI: 10.1071/pp9820519

Google Scholar

[12] Epstein, E. 1980. Impact of plant productivity for food, chemicals and energy. In: Genetic Engineering of osmoregualation. pp.7-21.

Google Scholar

[13] Flanagan, L.B. and R.L. Jefferies. 1988. Stomatal limitation of phytosynthesis and reduced growth of the halophyte Plantago maritima (L.) at high salinity. Plant Cell and Environ, 11: 239-246.

DOI: 10.1111/j.1365-3040.1988.tb01142.x

Google Scholar

[14] Flowers, T.J., S.A. Flower and H. Greenway, 1986. Effect of sodium chloride on tobacco plants. Plant Cell and Environment. 9: 645-651.

DOI: 10.1111/j.1365-3040.1986.tb01622.x

Google Scholar

[15] Gorham, J., C. Hardy, R.G. Wyn Jones, L.R. Joppa and C.N. Law, 1987. Chromosomal location of the K+/Na+ discriminating characters in the D Genome of wheat. Theae Appl. Genet, 74: 584-588.

DOI: 10.1007/bf00288856

Google Scholar

[16] Hwang, Y.H. and S.H. Chen, 1995. Anatomical responses in Kandelia candel (L.) Deuce. Seedlings growing in the presence of different concentrations of NaCl. Bot. Bul. Acad. Sci, 36: 181-188.

Google Scholar

[17] Hwang, Y.H. and S.H. Chen, 2001. Effects of ammonium phosphate and salinity on growth, gas exchange characteristics and ionic contents of seedling of mangrove Kandelia candel (L.) Druce. Bot. Bull. Acad. Sin, 42: 131-139.

Google Scholar

[18] Joshi, A.J. and E.R.R. Iyengar, 1987. Effects of seawater salinity on free amino acids and mineral ions are Suaeda nudiflora Moq. Proc. Indian. Acad. Sci, 97: 309-314.

DOI: 10.1007/bf03053385

Google Scholar

[19] Joshi, A.J., A. Sagar Kumar and H. Heriglajia, 2002. Effects of sea water on germination, growth, accumulation of organic components and inorganic ions in halophytic grass Heleochola setulosa (TRIN). Blattet Mccann Indian J. Plant Physiol, 7: 26-30.

Google Scholar

[20] Khan, M.A. and I.A. Ungar, 2000. Alleviation of innate and salinity induced dormancy in Atriplex griffithii. Moq. Var. Stoksiboiss. Seed Sciences and Technology. 28: 29-37.

Google Scholar

[21] Khan, M.A., I.A. Ungar and A.M. Showalter, 2000. The effect of salinity on the growth water status and ion content of a leaf succulent perennial halophyte Suaeda fruticosa. J. Arid Environ, 45: 73-84.

DOI: 10.1006/jare.1999.0617

Google Scholar

[22] Khan, M.A., I.A. Ungar and A.M. Showalter, 2005. Salt stimulation and tolerance in an inter tidal stem – succulent halophyte. J. Plant Nutr, 28: 1365-1374.

DOI: 10.1081/pln-200067462

Google Scholar

[23] Lee, G., V. Carrow and A. Duncan, 2005. Growth and water relation responses to salinity stress in halophytic sea shore Paspalum ecotypes, Sci. Hort, 104: 221-236.

DOI: 10.1016/j.scienta.2004.08.011

Google Scholar

[24] Leigh, R. A. and R. G. Wyn Jones, 1984. A hypothesis relating critical potassium concentration for growth to the distribution and functions of this ion in the plant cell. New Physiol, 97: 1-13.

DOI: 10.1111/j.1469-8137.1984.tb04103.x

Google Scholar

[25] Maggio, A., M.P. Reddy and R.J. Joly, 2003. Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity. Environ. Exp. Bot, 44: 31-38.

DOI: 10.1016/s0098-8472(00)00051-4

Google Scholar

[26] Manikandan, T. and A. Venkatesan, 2004. Influence on NaCl on growth, organic constituents and certain antioxidant enzymes of Aegiceras corniculatum. Blanco. Geobios.31: 30-33.

Google Scholar

[27] McMillan, C. 1974. Salt tolerance of mangroves and submer ged aquatic plants. Reimold, R.J. and W.H. Queen (eds.) pp.379-390. Academic press, New York.

DOI: 10.1016/b978-0-12-586450-3.50014-7

Google Scholar

[28] Medina. E., A.E. Lugo and A. Novelo, 1995. Mineral content of foliar tissue of mangrove species of the some common lagoon (Vera cruz, Mexico) and its relation with salinity N. Biotropica, 27: 317-323.

Google Scholar

[29] Pool, D.J., A.E. Lugo and S.C. Snedaker, 1975. Litter production in mangrove forest of Southern Florida and Puerto Rico. In: Proc. Int. Symp. Biol. and Management of mangroves. Vol. I. Walsh, G.E. S.C. Snedaker and H.J. Teas. (eds.), pp.213-237. Int. Food. Agri. Sci, Univ. Florida, Gainesville.

DOI: 10.2307/2387881

Google Scholar

[30] Prado, F. E., C. Boern, M. Gallardo and H. J. A. Gonzalez, 2000. Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa, wild seeds. Bot. Acad Sci, 41: 27-34.

Google Scholar

[31] Shindle, L. S. and L. J. Bhosale, 1985. Studies on salt tolerance in Aegiceras corniculatum (L.) Blanco and Sesuvium portulacastrum (L). The mangroves: Proc. Nat. Symp. Biol, Util. Cons. Mangroves. 300-304. Shivaji University, Kolhapur.

Google Scholar

[32] Storey, R. and R.G. Wyn Jones, 1979. Responses of Atriplex spongiosa and Suaeda monoica to salinity. Plant Physiol, 63: 156-162.

DOI: 10.1104/pp.63.1.156

Google Scholar

[33] Ushakova, S. A., N.P. Kovalera, I.V. Gribovskaya, V.A. Ddgushev and N.A. Tikhomira, 2005. Effect of NaCl concentration on productivity and mineral composition of Salicornia europea as a potential crop for utilization NaCl in LSS. Adv. Space Res, 36:1349-53.

DOI: 10.1016/j.asr.2004.09.017

Google Scholar

[34] Venkatesalu, V. and K.P. Chellappan, 1993. Photosynthetic characteristics of Sesuvium portulacastrum (L.) under salt stress. Photosynthetica. 28: 313-316.

Google Scholar

[35] Venkatesalu, V., R. Rajkumar and K.P. Chellappan, 1994. Growth and mineral distribution of Sesuvium portulacastrum L. a salt marsh halophyte, under

DOI: 10.1080/00103629409369226

Google Scholar

[36] Venkatesan, A., K.P. Chellappan and V. Venkatesalu, 1997. Salinity stress on mineral nutrition and growth of Ipomoea pes-caprae, sweet. Geobios. 24: 112-118.

Google Scholar

[37] Wahome, P.K. 2001. Mechanism of salt stress tolerance in two rose root stocks: Rosa chinensis "Major" and Rosa robiginosa. Sci. Hortic, 87: 207-216.

DOI: 10.1016/s0304-4238(00)00168-0

Google Scholar

[38] Wang, B., U. Luttge and R. Ratajczak, 2004. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa (L.). J. Plant Physiol, 161: 285-293.

DOI: 10.1078/0176-1617-01123

Google Scholar

[39] Williams, C.H. and V.Twine, 1960. In: Modern methods of plant analysis, Peach, K. and M.V. Tracey (eds.) pp.3-5. Springer-Verlag – Berlin.

Google Scholar

[40] Wong, C.E., Y. Li, A. Labbe, D. Guevara, P. Nuin and B. Whitty, 2006. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis. Plant Physiol, 140: 1437-50.

DOI: 10.1104/pp.105.070508

Google Scholar

[41] Yoshida, S., D.A. Forno, J. Cock and K.A. Gomez, 1972. Laboratory manual for physiological studies of rice, 1221, Philippines. ( Received 08 February 2014; accepted 14 February 2014 )

Google Scholar