Screening of Cellulase and Pectinase by Using Pseudomonas fluorescence and Bacillus subtilis

Article Preview

Abstract:

A study was conducted to determine the Production of cellulase and pectinase enzyme by using Plant growth promoting rhizobacteria like Pseudomonas fluorescence and Bacillus subtilis. These to micro organism are isolated by serial dilution method. One gram of soil sample was diluted in to 10 ml of sterile distilled water and 1 ml of sample solution was serially diluted in 9ml of sterile water up to 10 dilution. Each sample from dilution 10-5 and 10-6 were taken and streaked in to KB and NA medium and incubate at 24 hrs. After 24 hrs Pseudomonas fluorescence and Bacillus subtilis was observed in the medium of KB and NA medium. Both the culture was sub cultured and maintain in the same for the further work. CMCase medium was prepared and sterilized by autoclave for 121 °C for 15 minutes after sterilization these medium contain petriplate was streaked by bacteria and incubates for 48h after incubation period a clear halo zone was produced by these bacteria among these bacteria Pseudomonas fluorescence are able to produce high amount of cellulose compare to Bacillus subtilis. Pectin agar medium was prepared and sterilized by autoclave for 121 °C for 15 minutes after sterilization these medium contain petriplate was streaked by bacteria incubates for 48h after incubation period a clear halo zone was produced by these bacteria, among these bacteria Pseudomonas fluorescence are able to produce high amount of Pectinase compare to Bacillus subtilis. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms.

Info:

[1] Abeysinghe, Plant Pathol. J. 8 (2009) 9-16.

Google Scholar

[2] Bloemberg G. V., Lugtenberg B. J., Current Opinion Plant Biology 4 (2001) 343-350.

Google Scholar

[3] Daniel J. O., O. Fergal, Microbiol. Rev. 56 (1992) 662-676.

Google Scholar

[4] Dey R., K. K. Pal, D. M. Bhatt, S. M. Chauhan, Microbiol. Res. 159 (2004) 371-394.

Google Scholar

[5] Dunne C., I. Delany A. Fenton F. O. Gara, Agronomie 16 (1996) 721-729.

Google Scholar

[6] Elbeltagy A., K. Nishioka, T. Sato, H. Suzuki, B. Ye, T. Hamada, T. Isawa, H. Mitsuia, K. Minamisawa, Appl. Environ. Microbiol. 67 (2001) 5285-5293.

DOI: 10.1128/aem.67.11.5285-5293.2001

Google Scholar

[7] Figueiredo M. V. B., C. R. Martinez H. A. Burity, C. P. Chanway, World J. Micro. Biotechnol. 24 (2008) 1187-1193.

Google Scholar

[8] Gardner J. M., Chandler L., Feldman A. W., Plant Soil 77 (1984) 103-113.

Google Scholar

[9] Gibeaut D. M., N. C. Carpita, Plant. J. 3 (1993) 1-30.

Google Scholar

[10] Gyaneshwar P., Naresh Kumar G., Parekh L. J., World J. Microbial. Biotechnol. (1998) 669-673.

Google Scholar

[11] Howie W. J., T. V. Suslow, Mol. Plant Microbe Interact. 4 (1991) 393-399.

Google Scholar

[12] Kavitha R., S. Umesha, Crop Prot. 26 (2007) 991-997.

Google Scholar

[13] Khammas K. M., E. Ageron, P. A. D. Grimont, P. Kaiser, Res. Microbiol. 140 (1989) 679-693.

Google Scholar

[14] Kloepper J. W., Leong J., Teintze M., Schroth M. N., Nature 268 (1980) 885-886.

Google Scholar

[15] Loewus F. A., M. W. Loewus, Annu. Rev. Plant Physiol. 34 (1983) 137-161.

DOI: 10.1146/annurev.pp.34.060183.001033

Google Scholar

[16] Mahmoud S. A. Z., E. M. Ramadan, F. M. Thabet, T. Khater, Zbl. Mikrobiol. 139 (1984) 227-232.

Google Scholar

[17] McSpadden Gardener B. B., A. Driks, Phytopathol. 94 (2004) 1244.

Google Scholar

[18] Meyer J. M. (2007). Siderotyping and bacterial taxonomy: a siderophore bank for a rapid identification at the species level of fluorescent and non-fluorescent Pseudomonas. In: Varma, S., Chincholkar, S. (Eds.), Microbial Siderophores. Springer, New York, pp.43-61.

DOI: 10.1007/978-3-540-71160-5_2

Google Scholar

[19] Moeinzadeh A., Sharif-Zadeh F., Ahmadzadeh M., Heidari Tajabadi F., Australian Journal of Crop Science 4 (2010) 564-570.

Google Scholar

[20] Okon Y., Y. Kapulnik, Plant. Soil 90 (1986) 3-16.

Google Scholar

[21] Pattern C. L., B. R. Glick, Appl. and Environ. Micro. 68 (2002) 3795-3801.

Google Scholar

[22] Penrose D. M., B. R. Glick, Canadian J. Microbiol. 47 (2001) 368-372.

Google Scholar

[23] Rangajaran S., Saleena L. M., Vasudevan P., Nair S., Plant Soil 251 (2003) 73-82.

Google Scholar

[24] Taurian T., M. S. Anzuay, J. Angelini, M. L. Tonelli, L. Luduena, A. Fabra, Plant Soil 329 (2010) 1016-1024.

Google Scholar

[25] Tien T. M., M. H. Gaskins, D. H. Hubbel, Appl. Environ. Microbiol. 37 (1979) 1016-1024.

Google Scholar

[26] Villacieros M. et al., Plant Soil 251 (2003) 47-54. ( Received 01 April 2014; accepted 07 April 2014 )

Google Scholar