Influence of Lead on Growth and Nutrient Accumulation in Black Gram (Vigna mungo. L)

Article Preview

Abstract:

This study was conducted to investigate toxic effects of Pb on growth and nutrient uptake in Black gram. Black gram was subjected to seven (5, 10, 25, 50, 75, 100 & 200 kg-1) levels of lead. Due to Pb toxicity, plant growth was adversely affected and relatively a severe reduction in root biomass was recorded. The Pb accumulation increased with the increase in lead concentrations. The uptake of different nutrients, i.e., N, P, K, Ca and Mg was reduced in black gram due to the lead treatment.

Info:

Pages:

22-27

Citation:

Online since:

July 2014

Export:

Share:

Citation:

* - Corresponding Author

[1] Ali M.A., M. Ashraf, H.R. Athar, J. Hazar. Mater 172 (2009) 964-969.

Google Scholar

[2] Black C.A., 1965. Methods of soil analysis part 2, Inc., Madison, W. Scocini

Google Scholar

[3] Gussarsson M., J. Plant Nut 17 (1994) 2151-2163.

Google Scholar

[4] Jackson M.L. (1958). In: Soil chemical analysis. Prentice-Hall of India, Private Limited, New Delhi

Google Scholar

[5] Kaya C., B.E. Ak, D. Higgs, J. Plant Nutr. 26 (2003) 543-560.

Google Scholar

[6] Larbi A., F. Morals A. Abadia, Y. Geogrocena J. J. Llucena, J. Abadia, Funct Plant Biol. 29 (2002) 1453-1464.

Google Scholar

[7] Nouri J., A.H. Mahvi, G.R. Jahed, A. Babaei, Environ. Geol. 55 (2008) 1337-1343.

Google Scholar

[8] Nriago J. O., Environment 32 (1990) 7-33.

Google Scholar

[9] Piper C., (1966). Soil and plant analysis. Asian Hans Publishers, Bombay, pp.11-36.

Google Scholar

[10] Ruley A.T., N.C. Sharma, S.V. Sahi, Plant Physiol Biochem. 42 (2004) 899-906.

Google Scholar

[11] Sanchez P.G., L.P. Fernandez, L.T. Trejo, G.G. Aleantra, J.D. Cruz, Acta Hort 481 (1999) 617-623.

Google Scholar

[12] Sezgin N., H.K. Ozcan, G. Demir, S. Nemlioglu, C. Bayat, Environ. Intl. 29 (2003) 979- 985.

Google Scholar

[13] Sinha P., B.K. Dube, P. Srivastava, C. Chatterjee, Chemosphere 65 (2006) 651-656.

Google Scholar

[14] Uveges J.L., A.L. Corbett, T.K. Mal, Environ. Pollut. 120 (2002) 319-323.

Google Scholar

[15] Uwah E.I., N.P Ndahi, V.O. Ogugbuaja, J. Appl. Sci. Environ. Sanit. 5 (2009) 83-90.

Google Scholar

[16] Wang H.H., X.Q. Shan, B. Wen, G. Owensb, J. Fang, S.Z. Zhang, Environ. Exp. Bot. 61 (2007) 246-253.

Google Scholar

[17] Wensheng S., L. Chonytu, Z. Zhiquan, Chinese J. Appl. Ecol. 8 (1997) 314-318.

Google Scholar

[18] Yilmaz K., I.E. Akinci, S. Akinci, New Zealand J. Crop Hortic. Sci. 37 (2009) 189-199.

Google Scholar

[19] Yoshida S., D. Fordo, J. Cock, K. Gomez (1972). Laboratory manual for physiological studies of rice 3rd Ed.

Google Scholar

[20] Williams and Twine (1960). In: Modern methods of plant analysis, pp.3-5.

Google Scholar

[21] T. Mahakavi, R. Bakiyaraj, L. Baskaran, Nusrat Rashid, K. Sankar Ganesh, International Letters of Natural Sciences 4 (2014) 58-65.

Google Scholar

[22] B. Elayaraj, International Letters of Natural Sciences 12(1) (2014) 85-93. ( Received 17 July 2014; accepted 24 July 2014 )

Google Scholar