Role of Cholera Toxin in Vibrio cholerae Infection in Humans - A Review

Article Preview

Abstract:

Vibrio cholerae, the causative agent of Asiatic cholera, is a gram-negative motile bacterial species acquired via oral ingestion of contaminated food or water sources. Cholera has spread from the Indian subcontinent where it is endemic to involve nearly the whole world seven times during the past 185 years. V. cholerae serogroup O1, biotype El Tor, has moved from Asia to cause pandemic disease in Africa and South America during the past 35 years. A new serogroup, O139, appeared in south Asia in 1992, has become endemic there, and threatens to start the next pandemic. The facultative human pathogen V. cholerae represents a paradigm that evolved from environmental non-pathogenic strains by acquisition of virulence genes. The major virulence factors of V. cholerae, cholera toxin (CTX) encoded by the ctxAB genes residing in the genome of filamentous lysogenic bacteriophage (CTXɸ) and toxin coregulated pilus (TCP) encoded by vibrio pathogenicity island (VPI). CTX, a potent stimulator of adenylate cyclase, causes the intestine to secrete watery fluid rich in sodium, bicarbonate, and potassium, in volumes far exceeding the intestinal absorptive capacity, by ADP-ribosylation of the alpha subunit of the GTP-binding protein. Thus intestinal infection with V. cholerae results in the loss of large volumes of watery stool, leading to severe and rapidly progressing dehydration and shock. Without adequate and appropriate rehydration therapy, severe cholera kills about half of affected individuals. Today, cholera still remains a burden mainly for underdeveloped countries, which cannot afford to establish or to maintain necessary hygienic and medical facilities. During the last three decades, intensive research has been undertaken to unravel the virulence properties and to study the epidemiology of this significant human pathogen. This review provides an overview of the role of CTX in the occurrence of this disease in humans.

Info:

Pages:

22-32

Citation:

Online since:

August 2014

Authors:

Export:

Share:

Citation:

[1] Alama M. etal., Proc Natl Acad Sci USA 111 (2014) 9917-9922.

Google Scholar

[2] Albert M.J. etal., Lancet 342 (1993a) 387-390

Google Scholar

[3] Albert M.J., Siddique A.K., Islam M.S., Faruque A.S.G., Ansaruzzaman M., Faruque S.M., Sack R.B., Lancet 341 (1993b) 704.

DOI: 10.1016/0140-6736(93)90481-u

Google Scholar

[4] Baumann P., Furniss A.L., Lee J.V., Bergey's Man Sys Bact 1 (1984) 518-538.

Google Scholar

[5] Bik E.M., Bunschoten A.E., Gouw R.D., Mooi F.R., EMBO J 14(1995) 209-216.

Google Scholar

[6] Brenner D.J., Krieg N.R., Staley J.T., Bergey's Man Systematic Bacteriology 2 (2005) 491-546.

Google Scholar

[7] Cassel D., Selinger Z., Proc Natl Acad Sci USA 74 (1977) 3307-3311.

Google Scholar

[8] Chakraborty S. et al., Appl Environ Microbiol 66 (2000) 4022-4028.

Google Scholar

[9] Chang E.B., Rao M.C., Diarrheal diseases Elsevier New York (1991) 49-72.

Google Scholar

[10] Comstock L.E., Johnson J.A., Michalski J.M., Morris J.G. Jr., Kaper J.B., Mol Microbiol 19 (1996) 815-826.

Google Scholar

[11] de Jonge H., Molecular pathogenesis of gastrointestinal infections Plenum Press New York (1991) 107-114.

Google Scholar

[12] De S.N., Nature (London) 183 (1959) 1533-1534.

Google Scholar

[13] Dizon J.J., W.B. Saunders Co. Philadelphia (1974) 367-379.

Google Scholar

[14] Donta S.T., Beristain S., Tomicic T.K., Infect Immun 61 (1993) 3282-3286.

Google Scholar

[15] Dutta N.K., Panse M.W., Kulkarni D.R., J Bacteriol 78 (1959) 594-595.

Google Scholar

[16] Faruque S.M., Saha Asadulghani M.N., Sack D.A., Sack R.B., Takeda Y., Nair G.B., J Infect Dis 182 (2000a) 1161-1168.

DOI: 10.1086/315807

Google Scholar

[17] Faruque S.M., Saha Asadulghani M.N., Rahman M.M., Waldor M.K., Sack D.A., Infect Immun 68 (2000b) 4795-4801.

DOI: 10.1128/iai.68.8.4795-4801.2000

Google Scholar

[18] Field M., Physiology of the gastrointestinal tract Raven Press New York (1981) 963-982.

Google Scholar

[19] Field M., N Engl J Med 284 (1971) 1137-1144.

Google Scholar

[20] Field M., Fromm D., Wallace C.K., Greenough W.B.III., J Clin Invest 48 (1969) 24.

Google Scholar

[21] Finkelstein R.A., Plenum Medical Book Co. New York 3 (1992) 155-187.

Google Scholar

[22] Finkelstein R.A., LoSpalluto J.J., J Exp Med 130 (1969) 185-202.

Google Scholar

[23] Galen J.E., Ketley J.M., Fasano A., Richardson S.H., Wasserman S.S., J Kaper. B., Infect Immun 60 (1992) 406-415.

DOI: 10.1128/iai.60.2.406-415.1992

Google Scholar

[24] Gill D.M., King C.A., J Biol Chem 250 (1975) 6424-6432.

Google Scholar

[25] Gill D.M., Rappaport R.S., J Infect Dis 139 (1979) 674-680.

Google Scholar

[26] Griffiths S.L., Finkelstein R.A., Critchley D.R., Biochem J 238 (1986) 313-322.

Google Scholar

[27] Hall R.H., Khambaty F.M., Kothary M., Keasler S.P., Lancet 342 (1993) 430.

DOI: 10.1016/0140-6736(93)92839-l

Google Scholar

[28] Hirst T.R., Sourcebook of bacterial protein toxins Academic Press London (1991) 75-100.

Google Scholar

[29] Holmgren J., Lonnroth I., Mansson J., Svennerholm L., Proc Natl Acad Sci USA 72 (1975) 2520-2524.

Google Scholar

[30] Hughes J.M., Hollis D.G., Gangarosa E.J., Weaver R.E., Ann Intern Med 88 (1978) 602-606.

Google Scholar

[31] Jiang S., Chu W., Fu W., Appl Environ Microbiol 69 (2003) 7541–7544.

Google Scholar

[32] Jiang S.C., Matte M., Matte G., Huq A., Colwell R.R., Appl Environ Microbiol 66 (2000) 148-153.

DOI: 10.1128/aem.66.1.148-153.2000

Google Scholar

[33] Kahn R.A., Gilman A.G., J Biol Chem 259 (1984) 6235-6240.

Google Scholar

[34] Kamruzzaman M., Robins W.P., Bari S.M., Nahar S., Mekalanos J.J., Faruque S.M., Infect Immun Epub (2014).

Google Scholar

[35] Kaper J.B., Moseley S.L., Falkow S., Infect Immun 32 (1981) 661-667.

Google Scholar

[36] Kaper J.B., Morris J.G. Jr, Levine M.M., Clin Microbiol Rev 8 (1995) 48-86.

Google Scholar

[37] Karaolis D.K., Johnson J.A., Bailey C.C., Boedeker E.C., Kaper J.B., Reeves P.R., Proc Natl Acad Sci USA 95 (1998) 3134-3139.

DOI: 10.1073/pnas.95.6.3134

Google Scholar

[38] Karaolis D.K., Somara S., Maneval Jr D.R., Johnson J.A., Kaper J.B., Nature 399 (1999) 375-379.

Google Scholar

[39] Kelly M.T., Hickman-Brenner F.W., Farmer III J.J., Man Clin Microbiol 5 (1991) 384-395.

Google Scholar

[40] King C.A., van Heyningen W.E., J Infect Dis 127 (1973) 639-647.

Google Scholar

[41] Koch R., Br Med J (1884) 403-407.

Google Scholar

[42] Lencer W.I., de Almeida J.B., Moe S., Stow J.L., Ausiello D.A., Madara J.L., J Clin Invest 92 (1993) 2941-2951.

DOI: 10.1172/jci116917

Google Scholar

[43] Lencer W.I., Delp C., Neutra M.R., Madara J.L., J Cell Biol 117 (1992) 1197-1209.

Google Scholar

[44] Levine M.M., Black R.E., Clements M.L., Cisneros L., Saah A., D. Nalin R., Gill D.M., Craig J.P., Young C.R., Ristaino P., J Infect Dis 145 (1982) 296-299.

DOI: 10.1093/infdis/145.3.296

Google Scholar

[45] Li M., Kotetishvili M., Chen Y., Sozhamannan S., Appl Environ Microbiol 69 (2003) 1728-1738.

Google Scholar

[46] Manning P.A., Stroeher U.H., Morona R., ASM Press Washington D.C. (1994) 77-94. Monsur K.A., Bull W.H.O 28 (1963) 387-389.

Google Scholar

[47] Miller-Podraza H., Bradley R.M., Fishman P.H., Biochemistry 21 (1982) 3260-3265.

Google Scholar

[48] Miller V.L., Mekalanos J.J., Proc Natl Acad Sci USA 81 (11) (1984) 3471-3475.

Google Scholar

[49] Morris J.G.Jr., Epidemiol Rev 12 (1990) 179-191.

Google Scholar

[50] Morris J.G., Black Jr.R.E., N Engl J Med 312 (1985) 343-350.

Google Scholar

[51] Morris J.G., Picardi Jr.J.L., Lieb S., Lee J.V., Roberts A., Hood M., Gunn R.A., Blake P.A., J Clin Microbiol 19 (1984) 296-297.

DOI: 10.1128/jcm.19.2.296-297.1984

Google Scholar

[52] Morris J.G.Jr., Wilson R., Davis B.R., Wachsmuth I.K., Riddle C.F., Wathen H.G., Pollard R.A., Blake P.A., Ann Intern Med 94 (1981) 656-658.

Google Scholar

[53] Moss J., Vaughan M., Mol Microbiol 5 (1991) 2621-2627.

Google Scholar

[54] Nair G.B. et al., J Clin Microbiol 44(11) 4211-4213.

Google Scholar

[55] Nair G.B., Oku Y., Takeda Y., Ghosh A., Ghosh R.K., Chattopadhyay S., Pal S.C., Kaper J.B., Takeda T., Appl Environ Microbiol 54 (1988) 3180-3182.

DOI: 10.1128/aem.54.12.3180-3182.1988

Google Scholar

[56] Nair G.B., Takeda Y., World J Microbiol Biotechnol 9 (1993) 299-400.

Google Scholar

[57] Nambiar M.P., Oda T., Chen C., Kuwazuru Y., Wu H.C., J Cell Physiol 154 (1993) 222-228.

Google Scholar

[58] Pal S.C., Plenum Medical Book Co. New York 3 (1992) 229-251.

Google Scholar

[59] Peek J.A., Taylor R.K., Proc Natl Acad Sci USA 89 (1992) 6210-6214.

Google Scholar

[60] Peterson J.W., Hejtmancik K.E., Markel D.E., Craig J.P., Kurosky A., Infect Immun 24 (1979) 774-779.

DOI: 10.1128/iai.24.3.774-779.1979

Google Scholar

[61] Pierce N.F., J Exp Med 137 (1973) 1009-1023.

Google Scholar

[62] Pollitzer R., W.H.O Geneva (1959).

Google Scholar

[63] Ramamurthy T., Garg S., Sharma R., Bhattacharya S.K., Nair G.B., Shimada T., Takeda T., Karasawa T., Kurazano H., Pal A., Takeda Y., Lancet 341 (1993) 703-704.

DOI: 10.1016/0140-6736(93)90480-5

Google Scholar

[64] Rao B.M., Surendran P.K., Lett Appl Microbiol 51 (2010) 65-74.

Google Scholar

[65] Rao B.M., Surendran P.K., J Food Sci Technol 50(3) (2013) 496-504.

Google Scholar

[66] Rennels M.B., Levine M.M., Daya V., Angle P., Young C., J Infect Dis 142 (1980) 328-331.

Google Scholar

[67] Rhine J.A., Taylor R.K., Mol Microbiol 13 (1994) 1013-1020.

Google Scholar

[68] Rivera I.N.G., Chun J., Huq A., Sack R.B., Colwell R.R., Appl Environ Microbiol 67 (2001) 2421-2429.

DOI: 10.1128/aem.67.6.2421-2429.2001

Google Scholar

[69] Said B., Scotland S.M., Rowe B., J Med Microbiol 40 (1994) 31-36.

Google Scholar

[70] Sakazaki R., Plenum Medical Book Co. New York 3 (1992) 37-55.

Google Scholar

[71] Shimada T., Nair G.B., Deb B.C., Albert M.J., Sack R.B., Takeda Y., Lancet 341 (1993) 1347.

Google Scholar

[72] Shimada T., Sakazaki R., Fujimara S., Niwano K., Mishina M., Takizawa K., Jpn J Med Sci Biol 43 (1990) 37-41.

Google Scholar

[73] Sixma T.K., Pronk S.E., Kalk K.H., Wartna E.S., van Zanten B.A.M., Witholt B., Hol W.G.J., Nature (London) 351 (1991) 371-377.

DOI: 10.1038/351371a0

Google Scholar

[74] Spangler B.D., Microbiol Rev 56 (1992) 622-647.

Google Scholar

[75] Staerk J., Ronneberger H.J., Wiegandt H., Behring Inst Mitt 55 (1974) 145-146.

Google Scholar

[76] Svennerholm A.-M., 43rd Nobel Symposium, Stockholm 1978 S Karger Basel (1980) 171-184.

Google Scholar

[77] Tacket C.O., Taylor R.K., Losonsky G., Lim Y., Nataro J.P., Kaper J.B., Levine M.M., Infect Immun 66 (1998) 692-695.

DOI: 10.1128/iai.66.2.692-695.1998

Google Scholar

[78] Tamura K., Shimoda S., Prescott L.M., Jpn J Med Sci Biol 24 (1971) 125-127.

Google Scholar

[79] Taylor R.K., Miller V.L., Furlong D.B., Mekalanos J.J., Proc Natl Acad Sci USA 84 (1987) 2833-2837.

Google Scholar

[80] van Heyningen W.E., Seal J.R., Westview Press Boulder Colo (1983).

Google Scholar

[81] Waldor M.K., Friedman D.I., Curr Opin Microbiol 8(4) (2005) 459-465.

Google Scholar

[82] Waldor M.K., Mekalanos J.J., Science 272 (1996) 1910-1914.

Google Scholar

[83] Waldor M.K., Mekalanos J.J., Lancet 343 (1994) 1366

Google Scholar

[84] Yu J., Webb H., Hirst T.R., Mol. Microbiol 6 (1992) 1949-1958. ( Received 24 July 2014; accepted 04 August 2014 )

Google Scholar