Effect of Chromium on Growth, Biochemicals and Nutrient Accumulation of Paddy (Oryza sativa L.)

Article Preview

Abstract:

Chromium is a heavy metal; this element is considered as an environmental hazard. Toxicity effects of chromium on growth and development of plants including inhibition of germination process decrease of growth and biomass of plant. The aim of this research is to study accumulation of Chromium along with nutrients and its effect on the growth of Paddy plant (Oryza sativa L). Thus, paddy seedlings grown in petriplates lined with filter paper undergoing, different treatments of Cr (0, 2.5, 5, 10, 25, 50, 75, 100 and 200 mg/L). After one week seedlings were removed and morpho physiological parameters like root length, shoot length and dry weight of plants and Biochemicals ,accumulation of nutrients along with Cr in roots and shoots were determined. The results indicated that the concentrations more than 100 mg/L chromium cause the reduction of morphophysiology parameters in the treatment plants rather than control plant and Cr addition in the cultures caused enhancement of chromium content in roots and shoots of plant seedlings. Similarly the biochemicals and nutrient accumulation also affected by increasing concentrations of chromium. It was also noted that accumulation of chromium in the roots was much higher than the shoots of the seedlings under treatment.

Info:

Pages:

63-71

Citation:

Online since:

August 2014

Export:

Share:

Citation:

* - Corresponding Author

[1] Abbassi S.S., Abbassi N., Soni R. (1998). Heavy metals in the environment, Mittal Publication, New Delhi, India.

Google Scholar

[2] Ali NA, Ater M.; Sunahara, Gl. and Robidoux, P.Y. (2004). Phytotoxicity and bioacuumulation of copper and chromium using barley (Hordeum Vulgare L.) in spiked artificial and natural forest soils. Ecotoxicology and environmental safety 57: 363-374.

DOI: 10.1016/s0147-6513(03)00074-5

Google Scholar

[3] Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol., 24: 1-15

DOI: 10.1104/pp.24.1.1

Google Scholar

[4] Assche F. Van, H. Clijsters, Plant Cell Environ. 13 (1990) 195-206.

Google Scholar

[5] Bitell, J.E., D.E. Koeppe and R.J. Miller, 1974. Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. Physiol. Plantarum, 30: 226-230.

DOI: 10.1111/j.1399-3054.1974.tb03648.x

Google Scholar

[6] Black, C.A., 1965. In: Methods of Soil Analysis Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Inc., Madison, Wisconsin, p.242.

Google Scholar

[7] Cervantes, C.; Campos-Garcia, J.; Debars, S.; Gutierrez-Corona, F.; Loza-Tavera, H.; Carlos-Tarres-Guzman, M. and Moreno-Sanchez, R. (2001). Interaction of chromium with Microgenesis and plants. FEMS Microbiol. Rev., 25: 335-347.

DOI: 10.1111/j.1574-6976.2001.tb00581.x

Google Scholar

[8] Chatterjee J., Chatterjee, C., Environ. Pollut. 109 (2000) 69-74.

Google Scholar

[9] Crooke W.M., R.H.E. Inkson, Plant Soil 6 (1995) 1-15.

Google Scholar

[10] Dua A., S.K. Sawhney, Environ. Exp. Bot. 31 (1991) 133-139.

Google Scholar

[11] Dube, B.K.; Tewari, K.; Chatterjee, J. and Chaterejee, C. (2003). Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53: 1147-1153.

DOI: 10.1016/s0045-6535(03)00570-8

Google Scholar

[12] Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350-356.

DOI: 10.1021/ac60111a017

Google Scholar

[13] Jackson, M.L., 1958. Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi, pp.22-23.

Google Scholar

[14] Kirk, J.T.O. and R.L. Allen, 1965. Dependence of chloroplast pigments synthesis on protein synthetic effects of acitilione. Biochem. Biophys. Res. Commun., 27: 523-530.

Google Scholar

[15] Krishnamurthy S., Wilkens M.M., Northeasteren geology 16 (1994) 14-17.

Google Scholar

[16] Lakshmi S., P. Sundaramoorthy, J. Ecobiol. 15 (2003) 7-11.

Google Scholar

[17] Lalitha, K., N. Balasubramanian and S. Kalavathy, 1999. Studies of impact of chromium on Vigna unguiculata (L.) Walp. var. Long. J. Swamy Bot. Cl., 16: 17-20.

Google Scholar

[18] Lanoreaux R.J.W.R., S. Chaney, Plant Physiol. 43 (1978) 231-236.

Google Scholar

[19] Lowry, O.H., N.J. Rosenbrough, A.L. Farr and R.J. Randall, 1951. Protein measurement with folin-phenol reagent. J. Biol. Chem., 193: 265-275.

DOI: 10.1016/s0021-9258(19)52451-6

Google Scholar

[20] Mayz D.M.J., P.M. Cartwright, Plant Soil 80 (1984) 423-430.

Google Scholar

[21] Moore, S. and W.H. Stein, 1948. Photometric method for use in the chromatography of amino acids. J. Biol. Chem., 176-388.

Google Scholar

[22] Nelson, N., 1944. A photometric adaptation of the Somogyis method for the determination of reducing sugar. Anal. Chem., 3: 426-428.

Google Scholar

[23] Pillay A. E., et al., Environ. Intl. 1048 (2003) 1-5.

Google Scholar

[24] Piper, C., 1966. Soil and plant analysis. Asian Hans Publishers, Bombay, pp.11-36.

Google Scholar

[25] Rai U. N., Tripathi R. D., Kumar N., Chromosphere 25 (1992) 721-732.

Google Scholar

[26] Rout, G.R., S. Samantary and P. Das, J. Plant Nutr. 20 (1997) 473-483.

Google Scholar

[27] Samantary, S. and B. Deo, 2004. Studies on chromium toxicity in mung bean (Vigna radiata L.). Adv. Plant Sci., 17: 189-194.

Google Scholar

[28] Sankar Ganesh K., AL.A. Chidambaram, P. Sundaramoorthy, L. Baskaran M. Selvaraj (a), Indian J. Environ. Ecoplan. 12 (2006) 291-296.

Google Scholar

[29] Sankar Ganesh K., L. Baskaran, S. Rajasekaran, K. Sumathi, AL.A. Chidambaram. P. Sundaramoorthy, Colloid. Surface. B 63 (2008) 159-163.

Google Scholar

[30] Sankar Ganesh, K., P. Sundaramoorthy and AL.A. Chidambaram, 2006b. Chromium toxicity effect on blackgram, soybean and paddy. Poll. Res., 25: 257-261.

Google Scholar

[31] Shanker A.K., C. Cervantes, H.L. Tavera, S. Avudainanyagam, Environ. Int. 31 (2005) 739-753.

Google Scholar

[32] Shanker A.K., M. Djanaguiraman, R. Sudhagar, C.N. Chandrashekar, G. Pathmanabhan (a), Plant Sci. 166 (2004) 1035-1043.

DOI: 10.1016/j.plantsci.2003.12.015

Google Scholar

[33] Sharma, D. C.; Chatterjee, C. and Sharma, C. P. (1995). Chromium accumulation by barley seedlings (Hordeum vulgare L,). Journal of experimental botany 25: 241-251.

Google Scholar

[34] Sharma D.C., Pant R. C., Journal of environmental science and health, Part A 29 (1994) 941-948.

Google Scholar

[35] Sidharthan, M. and A.S. Lakshmanachary, 1996. Efficacy of chromium on germination, growth and biochemical studies on Glycine max var. CO 1. In: Jha, P.K., G.P.S. Ghirmire, S.B. Kamacharya, S.R. Baral and P. Lacoul (eds.), Environment and Biodiversity, Ecological Society, Katmandu, Nepal, pp.326-328.

Google Scholar

[36] Subramani, A., P. Sundaramoorthy, S. Saravanan, M. Selvaraj and A.S. Lakshmanachary, 1999. Screening of groundnut cultivars for chromium sensitivity. Ecoprint, 6: 61-65.

Google Scholar

[37] Sundaramoorthy, P., K. Sankar Ganesh, L. Baskaran, K. Sumathi, S. Rajasekaran, 2006b. Germination behaviour of some agricultural crops under chromium treatment. Bull. Biol. Sci., 4: 99-101.

Google Scholar

[38] Sundaramoorthy, P., K. Sankar Ganesh, S. Rajasekaran, L. Baskaran and K. Sumathi, 2006a. Studies on the effect of chromium on germination and growth of soybean (Glycine max) cultivars. Bull. Agr. Sci., 4: 91-94.

Google Scholar

[39] Williams, C.H. and V. Twine, 1960. In: Peach, K. and M.V. Tracey (eds.), Modern Methods of Plant Analysis, Vol. 5, Springer Verlag, Berlin, pp.3-5.

Google Scholar

[40] Yoshida, S., D. Fordo, J. Cork and K. Gomez, 1972. Laboratory manual for physiological studies of rice, 3rd edn., The International Rice Research Institute, Philippines, pp.11-23.

Google Scholar

[41] Zayed A. M., Terry N., Plant and soil 249 (2003) 139-156.

Google Scholar

[42] Zayed A., Lytle C.M., Qian J.H., Terry N., Planta 206 (1998) 293-299. ( Received 10 August 2014; accepted 19 August 2014 )

Google Scholar