[1]
Schlagerman P, Gottlicher G, Dillschneider R, Rosello-Sastre R, Posten C, (2012). Composition of Algal Oil and Its Potential as Biofuel. Poulickova, A., P. Hasler, et al. (2008). "The ecology of freshwater epipelic algae: an update. Phycologia , 437-450.
DOI: 10.1155/2012/285185
Google Scholar
[2]
Ehimen EA, Sun ZF, Carrington CG, (2010). Variables affecting the in situ transesterification of microalgae lipids. Fuel, 89(3): 677-684.
DOI: 10.1016/j.fuel.2009.10.011
Google Scholar
[3]
Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q, (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metable Engineering, 12: 387-391.
DOI: 10.1016/j.ymben.2010.02.002
Google Scholar
[4]
Pyle, DJ, Garcia RA, (2008). Producing docosahexaenoic acid (DHA)-rich algae fromBiodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 103 (1): 3933-3939.
DOI: 10.1021/jf800602s
Google Scholar
[5]
Chisti, Y., (2007). Biodiesel from microalgae Biotechnology Advances 25(3): 297-301.
Google Scholar
[6]
Sanchez A, Gonzalez A, Maceiras R, Cancela A, Urrejola S., (2011). Raceway pond design for microalgae culture for biodiesel. Chemical Engineering Transition, 64: 845–50.
Google Scholar
[7]
Carla S, Jones Stephen P, Mayfield, (2012). Algae biofuels: versatility for the future of bioenergy: available at www.sciencedirect.com, 5-6.
Google Scholar
[8]
Benemann JR, Oswald WJ, (1993). Systems and economic analysis of microalgae ponds for conversion of carbon dioxide to biomass. Final Report: Grant No. DE-FG22-93PC93204. Pittsburgh Energy Technology Center, Pittsburgh, PA, US Department of Energy.
DOI: 10.2172/493389
Google Scholar
[9]
Hannon, M, Gimpel J, Tran M, Rasala B, Mayfield S, (2010). Biofuels from algae: challenges and potential, Biofuels 763–784.
DOI: 10.4155/bfs.10.44
Google Scholar
[10]
Basha, SA, Gopal KR, Jebaraj, S. (2009). A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews, 13 (6-7): 1628-1630.
DOI: 10.1016/j.rser.2008.09.031
Google Scholar
[11]
Simionato D, (2013). Optimization of light use efficiency for biofuel production in algae, Biophysical Chemistry, 39(1): 45-52.
Google Scholar
[12]
Abraham M, Asmare, Berhanu A, Demessie, Ganti S, Murthy, (2013).Theoretical Estimation of Algal Biomass Potential and Lipid Productivity for Biofuel Production in Ethiopia. International Journal of Science and Research , 45: 285-294.
Google Scholar
[13]
Williams PJ, Laurens LM, (2010). Microalgae as biodiesel and biomass feedstocks: Review and analysis of the biochemistry, energetic and economics. Energy and Environmental Science, 3: 554-557.
DOI: 10.1039/b924978h
Google Scholar
[14]
Doucha J, Livansky K, (2006). Productivity CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. Journal of Applied Physiology 18: 811–815.
DOI: 10.1007/s10811-006-9100-4
Google Scholar
[15]
Ranjan A, Patil C, Moholkar VS., (2010). Mechanistic assessment of microalgal lipid extraction. Industry Engineering and Chemistry Research, 36: 2979–81.
DOI: 10.1021/ie9016557
Google Scholar
[16]
Zhang BY, Geng YH, Li ZK, Hu HJ, Li YG., (2009). Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture; 275–278.
DOI: 10.1016/j.aquaculture.2009.06.043
Google Scholar
[17]
Veillette M, Chamoumi M, Nikiema J, Faucheux N, Heit M, (2012). Production of Biodiesel from Microalgae. Journal of Chemical Engineering and Biotechnological Engineering Department, 8-11.
DOI: 10.5772/31368
Google Scholar
[18]
El Sikaily, A., A. Khaled, (2006). Removal of Methylene Blue from aqueous solution by marine green alga Ulva lactuca. Chemistry and Ecology 22(2): 149-151.
DOI: 10.1080/02757540600579607
Google Scholar
[19]
Kebede-Westhead E, Pizarro C, (2006). Treatment of swine manure effluent using freshwater algae: Production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. Journal of Applied Physiology 18(1): 41-46.
DOI: 10.1007/s10811-005-9012-8
Google Scholar
[20]
Sander K, Murthy GS, (2010). Life cycle analysis of algae biodiesel. International Journal of Life Cycle Assessment, 34: 704-707.
DOI: 10.1007/s11367-010-0194-1
Google Scholar
[21]
Michael B. Johnson, (2009). Microalgal Biodiesel Production through a Novel Attached Culture System and Conversion Parameters. Journal of Biological Systems Engineering, 4-9.
Google Scholar
[22]
Bai M, Cheng C, Wan H, Lin Y, (2011). Microalgae pigments potential as byproducts in lipid production. Journal of the Taiwan Institute of Chemical Engineers, 42 (5): 783-786. ( Received 16 December 2014; accepted 29 December 2014 )
DOI: 10.1016/j.jtice.2011.02.003
Google Scholar