[1]
Avery, G. B., Shannon, R. D., White, J. R., Martens, C. S., and Alperin, M. J. Biogeochemistry 62 (2003) 19–37.
DOI: 10.1023/a:1021128400602
Google Scholar
[2]
Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O. Global Biogeochem. Cy. 8 (1994) 465–480.
Google Scholar
[3]
Bange, H. W. Estuar. Coast. Shelf S 70 (2006) 361–374.
Google Scholar
[4]
Barber, R.D. and J.G. Ferry. Methanogenesis. eLS. (2001)
Google Scholar
[5]
Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., and Dise, N. B. J. Geophys. Res 97 (1992) 16645–16660.
DOI: 10.1029/91jd00610
Google Scholar
[6]
Baumgartner, M., Schilt, A., Eicher, O., Schmitt, J., Schwander, J., Spahni, R., Fischer, H., and Stocker, T. F. Biogeosciences 9 (2012) 3961–3977.
DOI: 10.5194/bg-9-3961-2012
Google Scholar
[7]
Bergamaschi PC, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T. Platt U, Kaplan JO, Ko¨rner S, Heimann M, Goede A. J Geophys Res 112 (2007).
DOI: 10.1029/2006jd007268
Google Scholar
[8]
Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C. Science 327 (2010) 322–325.
Google Scholar
[9]
Bonacker, L.G., Baudner, S., Morschel, E., Bocher, R., and Thauer, R.K. Eur J Biochem 217 (1993) 587–595
DOI: 10.1111/j.1432-1033.1993.tb18281.x
Google Scholar
[10]
Boone, D. R. & Whitman, W. B. Int J Syst Bacteriol 38 (1988) 212–219.
Google Scholar
[11]
Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC. Res Microbiol 162 (2011) 832-847.
DOI: 10.1016/j.resmic.2011.06.004
Google Scholar
[12]
Bridgham, S.D, Cadillo-Quiroz H, Keller JK, Zhuang Q. Glob Chang Biol 2013; 19 (2013) 1325-1346.
Google Scholar
[13]
Butenhoff, C.L. andM.A.K. Khalil. Environ. Sci. Technol. 41 (2007) 4032–4037.
Google Scholar
[14]
Carberry CA, Waters SM, Kenny DA, Creevey CJ. 2014. Applied and Environmental Microbiology 80:2 (2014) 586–594.
Google Scholar
[15]
Cavicchioli R. Nature Reviews Microbiology 4 (2006) 331–343.
Google Scholar
[16]
Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., and Rivers, J. S. Global Biogeochem. Cycl. 14 (2000) 1095–1108.
Google Scholar
[17]
Chen, H., Yao, S. P., Wu, N., Wang, Y. F., Luo, P., Tian, J. Q., Gao, Y. H., and Sun, G. J. Geophys. Res. 113 (2008) D12303, doi:10.1029/2006JD008072, (2008)
Google Scholar
[18]
Christensen, T. R., Panikov, N., Mastepanov, M., Joabsson, A., Stewart, A., O¨ quist, M., Sommerkorn, M., Reynaud, S., and Svensson, B. Biogeochemistry 64 (2003) 337– 354.
DOI: 10.1023/a:1024913730848
Google Scholar
[19]
Covey, K. R., Wood, S. A., Warren, R. J., Lee, X. and Bradford, M. A. Geophys. Res. Lett. 39 (2012) L15705.
Google Scholar
[20]
Daniel H. Rothmana, Gregory P. Fournier, Katherine L. French, Eric J. Alm, Edward A. Boyle, Changqun Cao, and Roger E. Summons. PNAS. 111:15 (2014) 5462–5467.
Google Scholar
[21]
Deppenmeier, U. Prog Nucleic Acid Res Mol Biol 71 (2002) 223– 283.
Google Scholar
[22]
Ding, W. X., Cai, Z. C., and Wang, D. X. Atmos. Environ. 38 (2004) 751–759.
Google Scholar
[23]
Ding, W. X., Zhang, Y. H., and Cai, Z. C. Atmos. Environ. 44 (2010) 3894–3900.
Google Scholar
[24]
Dlugokencky EJ, Nisbet EG, Fischer R, Lowry D. Philos. T. Roy. Soc. A 369 (2011) 2058–2072.
Google Scholar
[25]
Eckburg, P.B., Bik, E.M., Bernstein, C.H.N., Purdom, E., Dethlefsen, L et al. (2005) Science 308 (2005)1635–1638.
DOI: 10.1126/science.1110591
Google Scholar
[26]
Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, editors. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge, United Kingdom and New York: Cambridge University Press. (2001) 239–287.
DOI: 10.1002/qj.200212858119
Google Scholar
[27]
Elberson, M.A. and Sowers, K.R. Int J Syst Bacteriol 47 (1997) 1258-1261.
Google Scholar
[28]
Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Journal of Dairy Science. 90:7 (2007) 3456–3467.
DOI: 10.3168/jds.2006-675
Google Scholar
[29]
EPA. Methane and nitrous oxide emissions from natural sources Washington. EPA 430-R-10-001. U.S. Environmental Protection Agency. (2010) 194p.
Google Scholar
[30]
Etiope, G., Lassey, K. R., Klusman, R. W., and Boschi, E. Geophys. Res. Lett. 35 (2008) L09307.
Google Scholar
[31]
Ferry JG. FEMS Microbiol Rev 23 (1999) 13-38.
Google Scholar
[32]
Ferry, J.G. &K.A. Kastead. Methanogenesis. In Archaea: Molecular Cell Biology. R. Cavicchioli, Ed. (2007) 288–314. Washington, D.C.: ASM Press.
DOI: 10.1128/9781555815516.ch13
Google Scholar
[33]
Ferry, J.G. FEMS Microbiol Rev 23 (1999) 13–38
Google Scholar
[34]
Garcia JL, Patel BK, Ollivier B. Anaerobe 6 (2000) 205-226.
Google Scholar
[35]
Gunsalus, R.P., and Wolfe, R.S. J Biol Chem 255 (1980) 1891–1895.
Google Scholar
[36]
Hackstein, J.H.P. and Stumm, C.K. Proceedings of the National Academy of Sciences, USA 91 (1994) 5441-5445.
Google Scholar
[37]
Hansen, J., M. Sato, R. Ruedy, A. Lacis and V. Oinas. Proc. Natl. Acad. Sci. USA 97 (2000) 9875–9880.
DOI: 10.1073/pnas.170278997
Google Scholar
[38]
Hedderich, R., and Whitman, W. Physiology and bio- chemistry of the methane-producing Archaea. InThe Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds). New York, USA: Springer, pp. (2006) 1050–1079.
DOI: 10.1007/0-387-30742-7_34
Google Scholar
[39]
Hoj L, Olsen RA, Torsvik VL (2005) Fems Microbiology Ecology 53 (2005) 89–101.
Google Scholar
[40]
Hook SE, Wright ADG, McBride BW. Archaea (2010)1–11.
Google Scholar
[41]
Horn, M.A., Matthies, C., Kusel, K., Schramm, A. and Drake, H.L. Applied and Environmental Microbiology 69 (2003) 74-83.
Google Scholar
[42]
Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S. Microbes Environ 28 (2013) 244-250.
Google Scholar
[43]
IPCC (2007) Climate change 2007. the physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., et al (eds). Cambridge, UK and New York, NY, USA: Cambridge University Press
DOI: 10.1080/01944363.2014.954464
Google Scholar
[44]
J. G. Ferry. Biochemistry of Acetotrophic Methanogenesis. Handbook of Hydrocarbon and Lipid Microbiology. (2010) pp.357-367
DOI: 10.1007/978-3-540-77587-4_23
Google Scholar
[45]
J.G. Ferry. Methanogenesis – Ecology, Physiology, Biochemistry & Genetics, (1994)
Google Scholar
[46]
King EE, Smith RP, St-Pierre B, Wright ADG. Appl. Environ. Microbiol. 77 (2011) 5682–5687.
Google Scholar
[47]
Kirschke, et al. Nature Geoscience. (2013)
DOI: 10.1038/ngeo1955
Google Scholar
[48]
Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH. PLoS ONE 8:2 (2013):e47879
DOI: 10.1371/journal.pone.0047879
Google Scholar
[49]
Kumar S, et al. World J. Microbiol. Biotechnol 25 (2009)1557–1566.
Google Scholar
[50]
Kumaresan, D., Hery, M., Bodrossy, L., Singer, A.C., Stralis-Pavese,N.,Thompson I.P.,andMurrell J.C. Res Microbiol 162 (2011)1027–1032.
Google Scholar
[51]
Kusar D, Avgustin G (2010) FEMS Microbiol. Ecol. 74 (2010) 1–8.
Google Scholar
[52]
Liu Y, Whitman WB. Ann N Y Acad Sci 1125 (2008) 171-189
Google Scholar
[53]
Lowe SE, Jain MK and Zeikus JG. Microbiological Reviews 57 (1993)451–509.
Google Scholar
[54]
Lowe, D.C. A green source of surprise. Nature 439 (2006)148–149.
Google Scholar
[55]
Magdalena K. Stoeva, Stéphane Aris-Brosou, John Chételat, Holger Hintelmann, Philip Pelletier, Alexandre J. Poulain. 2014. PLoS ONE 9:3 (2014) e89531
DOI: 10.1371/journal.pone.0089531
Google Scholar
[56]
McMichael AJ, Powles JW, Butler CD, Uauy R. The Lancet. 370:9594 (2007)1253–1263
DOI: 10.1016/s0140-6736(07)61256-2
Google Scholar
[57]
Mihajlovski A, Doré J, Levenez F, Alric M, Brugère JF. Environ Microbiol Rep 2 (2010) 272-280
DOI: 10.1111/j.1758-2229.2009.00116.x
Google Scholar
[58]
Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley,Hoboken
Google Scholar
[59]
Morgan, R.M., Pihl, T.D., Nolling, J., and Reeve, J.N. J Bacteriol 179 (1997) 889–898.
Google Scholar
[60]
Murrell, J.C., and Whiteley, A.S. Stable Isotope Probing and Related Technologies. Washington, DC, USA: ASM Press (2011).
Google Scholar
[61]
Nazaries L., Tate K. R., Ross J. D., Singh J., et al. ISME J. 5 (2011) 1832–1836.
Google Scholar
[62]
Neufeld, J.D., Chen, Y., Dumont, M.G., and Murrell, J.C. Environ Microbiol 10 (2008) 1526–1535.
Google Scholar
[63]
Neufeld, J.D., Dumont, M.G., Vohra, J., and Murrell, J.C. Microb Ecol 53 (2007) 435–442.
Google Scholar
[64]
Ohkuma, M., Noda, S. and Kudo, T. FEMS Microbiology Letters 171 (1999) 147-53.
Google Scholar
[65]
Ollivier B. Anaerobe 6 (2000) 205–226.
Google Scholar
[66]
Paul K, Nonoh JO, Mikulski L, Brune A. Appl Environ Microbiol 78 (2012) 8245
Google Scholar
[67]
Petit J.R.,J.Jouzel,D.Raynaudetal. Nature 399 (1999) 429–436
Google Scholar
[68]
Petrescu, A. M. R., van Beek, L. P. H., van Huissteden J., Prigent, C., Sachs, T., Corradi, C. A. R., Parmentier, F. J.W., and Dolman A. J. Global Biogeochem. Cycl. 24 (2010) GB4009
DOI: 10.1029/2009gb003610
Google Scholar
[69]
Pihl, T.D., Sharma, S. and Reeve, J.N. Journal of Bacteriology 176 (1994)6384-6391
Google Scholar
[70]
Ramakrishnan, B., Lueders, T., Dunfield, P.F., Conrad, R. and Friedrich, M.W. FEMS Microbiology Ecology 37 (2001)175-186
DOI: 10.1111/j.1574-6941.2001.tb00865.x
Google Scholar
[71]
Reeburgh WS. Chem Rev 107 (2007) 486-513.
Google Scholar
[72]
Reeve, J.N., Nolling, J., Morgan, R.M., and Smith, D.R. J Bacteriol 179 (1997) 5975–5986
Google Scholar
[73]
Reim, A., Lüke, C., Krause, S., Pratscher, J., and Frenzel, P. ISME J 6 (2012) 2128–2139.
Google Scholar
[74]
Saengkerdsub S, Ricke SC. Crit Rev Microbiol 40 (2014) 97-116
Google Scholar
[75]
Schlesinger, W.H. Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA, (1997) 588 p.
Google Scholar
[76]
Steigerwald, V.J., Stroup, D., Hennigan, A.N., Palmer, J.R., Pihl, T.D., Daniels, C.J., and Reeve, J.N. Methyl coenzyme-M reductase II genes and their close linkage to the methyl viologen-reducing hydrogenase-polyferredoxin operon in the genomes of Methanobacterium thermoautotrophicum and Methanothermus fervidus. In Industrial Microorganisms: Basic and Applied Molecular Genetics. Baltz, R.H., Hegeman, G.D., and Skatrud, P.L. (eds). Washington, DC, USA: American Society for Micro- biology Press, pp. (1993) 109–115.
Google Scholar
[77]
Takai, K. and Horikoshi, K. Genetics 152 (1999) 1285-1297.
Google Scholar
[78]
Thauer, R.K. Microbiology 144 (1998) 2377– 2406.
Google Scholar
[79]
Walter, B. P. and Heimann, M. Global Biogeochem. Cycl. 14 (2000) 745–765.
Google Scholar
[80]
Watanabe, K., Kodama, Y., Hamamura, N. and Kaku, N. Applied & Environmental Microbiology 68 (2002) 3899-3907.
Google Scholar
[81]
Westermann, P. Chemosphere 26 (1993) 321–328.
Google Scholar
[82]
Whalen SC. Environ Eng Sci 22 (2005)73–94
Google Scholar
[83]
Whiticar MJ, Faber E, Schoell M. Geochim Cosmochim Acta 50 (1986) 693-709
Google Scholar
[84]
Whiting, G. J. and Chanton, J. P. Nature 364 (1993) 794–795
Google Scholar
[85]
Woese CR, Magrum LJ, Fox GE. J Mol Evol 11 (1978) 245 – 252.
Google Scholar
[86]
Wright ADG, Klieve AV. Anim. Feed Sci. Technol. (2011)166–167:248 –253
Google Scholar
[87]
Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H. Bioscience, Biotechnology and Biochemistry 64:8 (2000)1737–1742
DOI: 10.1271/bbb.64.1737
Google Scholar
[88]
Yavitt, J.B., Yashiro, E., Cadillo-Quiroz, H., and Zinder, S.H. Biogeochemistry109 (2012)117–131
Google Scholar
[89]
Yusuf RO, Noor ZZ, Abba AH, Hassan MAA, Din MFM. Renewable and Sustainable Energy Reviews 16:7 (2012)5059–5070.
DOI: 10.1016/j.rser.2012.04.008
Google Scholar