Methanogens in the Environment: An Insight of Methane Yield and Impact on Global Climate Change

Article Preview

Abstract:

Methane is a most important greenhouse gas for planetary heating and it’s produced by methanogenic microorganisms as a metabolic byproduct and creates climate change. Methanogens are ancient organisms on earth found in anaerobic environments and methane is a key greenhouse gas concerned with methanogens. Therefore here is intense interest to writing this paper. A number of experiments have already conducted to study the methanogens in various environments such as rumen and intestinal system of animals, fresh water and marine sediments, swamps and marshes, hot springs, sludge digesters, and within anaerobic protozoa which utilize carbon dioxide in the presence of hydrogen and produce methane. The diversity of methanogens, belong to the domain Archaea and get involved in biological production of methane that catalyzes the degradation of organic compound as a part of global carbon cycle called methanogenesis. Majorly in this article we summaries the diversity of methanogens and their impact on global warming.

Info:

Pages:

51-60

Citation:

Online since:

April 2015

Export:

Share:

Citation:

[1] Avery, G. B., Shannon, R. D., White, J. R., Martens, C. S., and Alperin, M. J. Biogeochemistry 62 (2003) 19–37.

DOI: 10.1023/a:1021128400602

Google Scholar

[2] Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O. Global Biogeochem. Cy. 8 (1994) 465–480.

Google Scholar

[3] Bange, H. W. Estuar. Coast. Shelf S 70 (2006) 361–374.

Google Scholar

[4] Barber, R.D. and J.G. Ferry. Methanogenesis. eLS. (2001)

Google Scholar

[5] Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., and Dise, N. B. J. Geophys. Res 97 (1992) 16645–16660.

DOI: 10.1029/91jd00610

Google Scholar

[6] Baumgartner, M., Schilt, A., Eicher, O., Schmitt, J., Schwander, J., Spahni, R., Fischer, H., and Stocker, T. F. Biogeosciences 9 (2012) 3961–3977.

DOI: 10.5194/bg-9-3961-2012

Google Scholar

[7] Bergamaschi PC, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T. Platt U, Kaplan JO, Ko¨rner S, Heimann M, Goede A. J Geophys Res 112 (2007).

DOI: 10.1029/2006jd007268

Google Scholar

[8] Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C. Science 327 (2010) 322–325.

Google Scholar

[9] Bonacker, L.G., Baudner, S., Morschel, E., Bocher, R., and Thauer, R.K. Eur J Biochem 217 (1993) 587–595

DOI: 10.1111/j.1432-1033.1993.tb18281.x

Google Scholar

[10] Boone, D. R. & Whitman, W. B.  Int J Syst Bacteriol 38 (1988) 212–219.

Google Scholar

[11] Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC. Res Microbiol 162 (2011) 832-847.

DOI: 10.1016/j.resmic.2011.06.004

Google Scholar

[12] Bridgham, S.D, Cadillo-Quiroz H, Keller JK, Zhuang Q. Glob Chang Biol 2013; 19 (2013) 1325-1346.

Google Scholar

[13] Butenhoff, C.L. andM.A.K. Khalil. Environ. Sci. Technol. 41 (2007) 4032–4037.

Google Scholar

[14] Carberry CA, Waters SM, Kenny DA, Creevey CJ. 2014. Applied and Environmental Microbiology 80:2 (2014) 586–594.

Google Scholar

[15] Cavicchioli R. Nature Reviews Microbiology 4 (2006) 331–343.

Google Scholar

[16] Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., and Rivers, J. S. Global Biogeochem. Cycl. 14 (2000) 1095–1108.

Google Scholar

[17] Chen, H., Yao, S. P., Wu, N., Wang, Y. F., Luo, P., Tian, J. Q., Gao, Y. H., and Sun, G. J. Geophys. Res. 113 (2008) D12303, doi:10.1029/2006JD008072, (2008)

Google Scholar

[18] Christensen, T. R., Panikov, N., Mastepanov, M., Joabsson, A., Stewart, A., O¨ quist, M., Sommerkorn, M., Reynaud, S., and Svensson, B. Biogeochemistry 64 (2003) 337– 354.

DOI: 10.1023/a:1024913730848

Google Scholar

[19] Covey, K. R., Wood, S. A., Warren, R. J., Lee, X. and Bradford, M. A. Geophys. Res. Lett. 39 (2012) L15705.

Google Scholar

[20] Daniel H. Rothmana, Gregory P. Fournier, Katherine L. French, Eric J. Alm, Edward A. Boyle, Changqun Cao, and Roger E. Summons. PNAS. 111:15 (2014) 5462–5467.

Google Scholar

[21] Deppenmeier, U. Prog Nucleic Acid Res Mol Biol 71 (2002) 223– 283.

Google Scholar

[22] Ding, W. X., Cai, Z. C., and Wang, D. X. Atmos. Environ. 38 (2004) 751–759.

Google Scholar

[23] Ding, W. X., Zhang, Y. H., and Cai, Z. C. Atmos. Environ. 44 (2010) 3894–3900.

Google Scholar

[24] Dlugokencky EJ, Nisbet EG, Fischer R, Lowry D. Philos. T. Roy. Soc. A 369 (2011) 2058–2072.

Google Scholar

[25] Eckburg, P.B., Bik, E.M., Bernstein, C.H.N., Purdom, E., Dethlefsen, L et al. (2005) Science 308 (2005)1635–1638.

DOI: 10.1126/science.1110591

Google Scholar

[26] Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, editors. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge, United Kingdom and New York: Cambridge University Press. (2001) 239–287.

DOI: 10.1002/qj.200212858119

Google Scholar

[27] Elberson, M.A. and Sowers, K.R. Int J Syst Bacteriol 47 (1997) 1258-1261.

Google Scholar

[28] Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Journal of Dairy Science.  90:7 (2007) 3456–3467.

DOI: 10.3168/jds.2006-675

Google Scholar

[29] EPA. Methane and nitrous oxide emissions from natural sources Washington. EPA 430-R-10-001. U.S. Environmental Protection Agency. (2010) 194p.

Google Scholar

[30] Etiope, G., Lassey, K. R., Klusman, R. W., and Boschi, E. Geophys. Res. Lett. 35 (2008) L09307.

Google Scholar

[31] Ferry JG. FEMS Microbiol Rev 23 (1999) 13-38.

Google Scholar

[32] Ferry, J.G. &K.A. Kastead. Methanogenesis. In Archaea: Molecular Cell Biology. R. Cavicchioli, Ed. (2007) 288–314. Washington, D.C.: ASM Press.

DOI: 10.1128/9781555815516.ch13

Google Scholar

[33] Ferry, J.G. FEMS Microbiol Rev 23 (1999) 13–38

Google Scholar

[34] Garcia JL, Patel BK, Ollivier B. Anaerobe 6 (2000) 205-226.

Google Scholar

[35] Gunsalus, R.P., and Wolfe, R.S. J Biol Chem 255 (1980) 1891–1895.

Google Scholar

[36] Hackstein, J.H.P. and Stumm, C.K. Proceedings of the National Academy of Sciences, USA 91 (1994) 5441-5445.

Google Scholar

[37] Hansen, J., M. Sato, R. Ruedy, A. Lacis and V. Oinas. Proc. Natl. Acad. Sci. USA 97 (2000) 9875–9880.

DOI: 10.1073/pnas.170278997

Google Scholar

[38] Hedderich, R., and Whitman, W. Physiology and bio- chemistry of the methane-producing Archaea. InThe Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds). New York, USA: Springer, pp. (2006) 1050–1079.

DOI: 10.1007/0-387-30742-7_34

Google Scholar

[39] Hoj L, Olsen RA, Torsvik VL (2005) Fems Microbiology Ecology 53 (2005) 89–101.

Google Scholar

[40] Hook SE, Wright ADG, McBride BW. Archaea (2010)1–11.

Google Scholar

[41] Horn, M.A., Matthies, C., Kusel, K., Schramm, A. and Drake, H.L. Applied and Environmental Microbiology 69 (2003) 74-83.

Google Scholar

[42] Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S. Microbes Environ 28 (2013) 244-250.

Google Scholar

[43] IPCC (2007) Climate change 2007. the physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., et al (eds). Cambridge, UK and New York, NY, USA: Cambridge University Press

DOI: 10.1080/01944363.2014.954464

Google Scholar

[44] J. G. Ferry. Biochemistry of Acetotrophic Methanogenesis. Handbook of Hydrocarbon and Lipid Microbiology.  (2010) pp.357-367

DOI: 10.1007/978-3-540-77587-4_23

Google Scholar

[45] J.G. Ferry. Methanogenesis – Ecology, Physiology, Biochemistry & Genetics, (1994)

Google Scholar

[46] King EE, Smith RP, St-Pierre B, Wright ADG. Appl. Environ. Microbiol. 77 (2011) 5682–5687.

Google Scholar

[47] Kirschke, et al. Nature Geoscience. (2013)

DOI: 10.1038/ngeo1955

Google Scholar

[48] Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH. PLoS ONE 8:2 (2013):e47879

DOI: 10.1371/journal.pone.0047879

Google Scholar

[49] Kumar S, et al. World J. Microbiol. Biotechnol 25 (2009)1557–1566.

Google Scholar

[50] Kumaresan, D., Hery, M., Bodrossy, L., Singer, A.C., Stralis-Pavese,N.,Thompson I.P.,andMurrell J.C. Res Microbiol 162 (2011)1027–1032.

Google Scholar

[51] Kusar D, Avgustin G (2010) FEMS Microbiol. Ecol. 74 (2010) 1–8.

Google Scholar

[52] Liu Y, Whitman WB. Ann N Y Acad Sci 1125 (2008) 171-189

Google Scholar

[53] Lowe SE, Jain MK and Zeikus JG. Microbiological Reviews 57 (1993)451–509.

Google Scholar

[54] Lowe, D.C. A green source of surprise. Nature 439 (2006)148–149.

Google Scholar

[55] Magdalena K. Stoeva, Stéphane Aris-Brosou, John Chételat, Holger Hintelmann, Philip Pelletier, Alexandre J. Poulain. 2014. PLoS ONE 9:3 (2014) e89531

DOI: 10.1371/journal.pone.0089531

Google Scholar

[56] McMichael AJ, Powles JW, Butler CD, Uauy R. The Lancet.  370:9594 (2007)1253–1263

DOI: 10.1016/s0140-6736(07)61256-2

Google Scholar

[57] Mihajlovski A, Doré J, Levenez F, Alric M, Brugère JF. Environ Microbiol Rep 2 (2010) 272-280

DOI: 10.1111/j.1758-2229.2009.00116.x

Google Scholar

[58] Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley,Hoboken

Google Scholar

[59] Morgan, R.M., Pihl, T.D., Nolling, J., and Reeve, J.N. J Bacteriol 179 (1997) 889–898.

Google Scholar

[60] Murrell, J.C., and Whiteley, A.S. Stable Isotope Probing and Related Technologies. Washington, DC, USA: ASM Press (2011).

Google Scholar

[61] Nazaries L., Tate K. R., Ross J. D., Singh J., et al. ISME J. 5 (2011) 1832–1836.

Google Scholar

[62] Neufeld, J.D., Chen, Y., Dumont, M.G., and Murrell, J.C. Environ Microbiol 10 (2008) 1526–1535.

Google Scholar

[63] Neufeld, J.D., Dumont, M.G., Vohra, J., and Murrell, J.C. Microb Ecol 53 (2007) 435–442.

Google Scholar

[64] Ohkuma, M., Noda, S. and Kudo, T. FEMS Microbiology Letters 171 (1999) 147-53.

Google Scholar

[65] Ollivier B. Anaerobe 6 (2000) 205–226.

Google Scholar

[66] Paul K, Nonoh JO, Mikulski L, Brune A. Appl Environ Microbiol 78 (2012) 8245

Google Scholar

[67] Petit J.R.,J.Jouzel,D.Raynaudetal. Nature 399 (1999) 429–436

Google Scholar

[68] Petrescu, A. M. R., van Beek, L. P. H., van Huissteden J., Prigent, C., Sachs, T., Corradi, C. A. R., Parmentier, F. J.W., and Dolman A. J. Global Biogeochem. Cycl. 24 (2010) GB4009

DOI: 10.1029/2009gb003610

Google Scholar

[69] Pihl, T.D., Sharma, S. and Reeve, J.N. Journal of Bacteriology 176 (1994)6384-6391

Google Scholar

[70] Ramakrishnan, B., Lueders, T., Dunfield, P.F., Conrad, R. and Friedrich, M.W. FEMS Microbiology Ecology 37 (2001)175-186

DOI: 10.1111/j.1574-6941.2001.tb00865.x

Google Scholar

[71] Reeburgh WS. Chem Rev 107 (2007) 486-513.

Google Scholar

[72] Reeve, J.N., Nolling, J., Morgan, R.M., and Smith, D.R. J Bacteriol 179 (1997) 5975–5986

Google Scholar

[73] Reim, A., Lüke, C., Krause, S., Pratscher, J., and Frenzel, P. ISME J 6 (2012) 2128–2139.

Google Scholar

[74] Saengkerdsub S, Ricke SC. Crit Rev Microbiol 40 (2014) 97-116

Google Scholar

[75] Schlesinger, W.H. Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA, (1997) 588 p.

Google Scholar

[76] Steigerwald, V.J., Stroup, D., Hennigan, A.N., Palmer, J.R., Pihl, T.D., Daniels, C.J., and Reeve, J.N. Methyl coenzyme-M reductase II genes and their close linkage to the methyl viologen-reducing hydrogenase-polyferredoxin operon in the genomes of Methanobacterium thermoautotrophicum and Methanothermus fervidus. In Industrial Microorganisms: Basic and Applied Molecular Genetics. Baltz, R.H., Hegeman, G.D., and Skatrud, P.L. (eds). Washington, DC, USA: American Society for Micro- biology Press, pp. (1993) 109–115.

Google Scholar

[77] Takai, K. and Horikoshi, K. Genetics 152 (1999) 1285-1297.

Google Scholar

[78] Thauer, R.K. Microbiology 144 (1998) 2377– 2406.

Google Scholar

[79] Walter, B. P. and Heimann, M. Global Biogeochem. Cycl. 14 (2000) 745–765.

Google Scholar

[80] Watanabe, K., Kodama, Y., Hamamura, N. and Kaku, N. Applied & Environmental Microbiology 68 (2002) 3899-3907.

Google Scholar

[81] Westermann, P. Chemosphere 26 (1993) 321–328.

Google Scholar

[82] Whalen SC. Environ Eng Sci 22 (2005)73–94

Google Scholar

[83] Whiticar MJ, Faber E, Schoell M. Geochim Cosmochim Acta 50 (1986) 693-709

Google Scholar

[84] Whiting, G. J. and Chanton, J. P. Nature 364 (1993) 794–795

Google Scholar

[85] Woese CR, Magrum LJ, Fox GE. J Mol Evol 11 (1978) 245 – 252.

Google Scholar

[86] Wright ADG, Klieve AV. Anim. Feed Sci. Technol. (2011)166–167:248 –253

Google Scholar

[87] Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H. Bioscience, Biotechnology and Biochemistry 64:8 (2000)1737–1742

DOI: 10.1271/bbb.64.1737

Google Scholar

[88] Yavitt, J.B., Yashiro, E., Cadillo-Quiroz, H., and Zinder, S.H. Biogeochemistry109 (2012)117–131

Google Scholar

[89] Yusuf RO, Noor ZZ, Abba AH, Hassan MAA, Din MFM. Renewable and Sustainable Energy Reviews 16:7 (2012)5059–5070.

DOI: 10.1016/j.rser.2012.04.008

Google Scholar