Comparative Studies on Blood Electrolytes of the Fresh Water Fish, Notopterus notopterus from Three Aquatic Bodies

Article Preview

Abstract:

The present study is undertaken to determine baseline levels of blood electrolytes for the fish, N.notopterus collected from three different aquatic bodies situated at different locations around Gulbarga region. The electrolytes such as sodium and potassium levels are having some difference in the fish collected from the three aquatic bodies. The data for blood Sodium 88.49 ± 16.68 mmol/l. in the fish from Bheema River, 101.32 ± 4.17 mmol/l. in the fish from Kagina River, and 87.5 ± 3.41, mmol/l. in the fish from Saradgi Stream., Potassium 14.48 ± 1.14 mmol/l. in the fish from Bheema River, 14.63 ± 1.15 mmol/l. in the fish from Kagina River, 13.19 ± 0.70 mmol/l. in the fish from Saradgi Stream. The blood calcium data are 9.00 ± 0.30 mg/dl. in the fish from Bheema River, 8.69 ± 0.50 mg/dl. in the fish from Kagina River, and 8.39 ± 0.45 mg/dl. in the fish from Saradgi Stream. Based on the results obtained for blood electrolytes, the fish N.notopterus from three aquatic bodies are although healthy and thriving well, the Bheema River provides better environmental conditions.

Info:

Pages:

1-5

Citation:

Online since:

May 2015

Export:

Share:

Citation:

* - Corresponding Author

[1] Atkinson, J. and F.W. Judd, F.W. (1978). Comparative haematology of Lepomis microlophus and Cichlosoma cyanogutatum. Copeia, 12: 230-237.

DOI: 10.2307/1443556

Google Scholar

[2] Butkus A, Roche PJ, Fernley RT, Haralambidis J, Penschow JD, Ryan GB, Trahair JF, Tregear GW, Coghlan JP 1987 Purification and cloning of a corpuscles of Stannius protein from Anguilla australis. Mol Cell Endocrinol 54:123–133 2.

DOI: 10.1016/0303-7207(87)90149-3

Google Scholar

[3] Butkus A, Roche PJ, Fernley RT, Haralambidis J, Penschow JD, Ryan GB, Trahair JF, Tregear GW, Coghlan JP 1987 Purification and cloning of a corpuscles of Stannius protein from Anguilla australis. Mol Cell Endocrinol 54:123–133

DOI: 10.1016/0303-7207(87)90149-3

Google Scholar

[4] Clarke, F. (1998). A review of the scientific justifications for maintaining the cetaceans in captivity. A report for the Whale and Dolphin Conservation Society (WDCS).

Google Scholar

[5] Davis, K. (2004). Temperature affects physiological stress response to acute confinement in sunshine bass (Morone chrysops x Morone saxatilis). Comparative Biochemistry and Physiology, 139A: 433-440.

DOI: 10.1016/j.cbpb.2004.09.012

Google Scholar

[6] Donaldson, E.M. (1981). The Pituitary Interregnal Axis as an Indicator of Stress in Fish In: Pickering, A.D. (Ed.) Stress in fish. Academic Press, London, pp: 11-47.

Google Scholar

[7] Evans, D.H. (1993)The Physiology of Fishes.2ndEdn.,CRC press, Boca Raton, pp: 49-73.

Google Scholar

[8] Fagbenro, O. A. (2002). Tilapia: fish for thought. 32nd Inaugural Lecture, Federal University of Technology, Akure, Nigeria. 77pp.

Google Scholar

[9] Fenwick JC, Brasseur JG 1991 Effects of stanniectomy and experimental hypercalcemia on plasma calcium levels and calcium influx in American eels, Anguilla rostrata, LeSueur. Gen Comp Endocrinol 82:459–465

DOI: 10.1016/0016-6480(91)90321-v

Google Scholar

[10] Lu M, Wagner GF, Renfro JL 1994 Stanniocalcin stimulates phosphate reabsorption by flounder renal proximal tubule in primary culture. Am J Physiol 267:R1356–R1362

DOI: 10.1152/ajpregu.1994.267.5.r1356

Google Scholar

[11] Lu M, Wagner GF, Renfro JL 1994 Stanniocalcin stimulates phosphate reabsorption by flounder renal proximal tubule in primary culture. Am J Physiol 267:R1356–R1362

DOI: 10.1152/ajpregu.1994.267.5.r1356

Google Scholar

[12] Madsen KL, Tavernini MM, Yachimec C, Mendrick DL, Alfonso PJ, Buergin M, Olsen HS, Antonaccio MJ, Thomson AB, Fedorak RN 1998 Stanniocalcin: a novel protein regulating calcium and phosphate transport across mammalian intestine. Am J Physiol 274:G96–G102

DOI: 10.1152/ajpgi.1998.274.1.g96

Google Scholar

[13] Milet C, Buscaglia M, Chartier MM, Martelly E, Lopez E 1984 Comparative effects of an extract of Anguilla Stannius corpuscles and of an active fragment of human parathyroid hormone (1–34 hPTH) on an anuran batracian, Xenopus laevis. C R Seances Acad Sci III 297:33–36

Google Scholar

[14] Percin, F., Sibel, K., Kursat, F and Sahin, S. (2010). Serum electrolytes of wild and captive Bluefin Tuna (Thunnus thynnus L.) in Turkish Seas J. Anim. Vet. Adv. 9(16): 2207-2213.

DOI: 10.3923/javaa.2010.2207.2213

Google Scholar

[15] Ross, B. and Ross, L.G. (2002). Anaesthetic and Seductive for Aquatic Animals.2nd Edition, Blackwell Science Ltd.

Google Scholar

[16] So YP, Fenwick JC 1977 Relationship between net 45calcium influx across a perfused isolated eel gill and the development of post-stanniectomy hypercalcemia. J Exp Zool 200:259–264

DOI: 10.1002/jez.1402000207

Google Scholar

[17] Srivastav AK, KS 1982 Calcemic responses of Stannius corpuscles extract in parrots, Psittacula psittacula. Experientia 38:869–870

DOI: 10.1007/bf01972324

Google Scholar

[18] Tavares-Dias, M., Moraes, F.R., Imoto, M.E. (2008). Hematological parameters in two neotropical freshwater teleost, Leporinus macrocephalus (Anostomidae) and Prochilodus lineatus (Prochilodontidae). Bioscience Journal, 24: 96-101

Google Scholar

[19] Wagner GF 1994 The molecular biology of the corpuscles of stannius and regulation of stanniocalcin gene expression. In: Hochachka PW, Mommsen TP (eds) Fish Physiology. Academic Press, Amsterdam, p.273–306

DOI: 10.1016/s1546-5098(08)60070-9

Google Scholar

[20] Wagner GF, Hampong M, Park CM, Copp DH 1986 Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol 63:481–491

DOI: 10.1016/0016-6480(86)90149-8

Google Scholar

[21] Wagner GF, Jaworski E 1994 Calcium regulates stanniocalcin mRNA levels in primary cultured rainbow trout corpuscles of Stannius. Mol Cell Endocrinol 99:315–322

DOI: 10.1016/0303-7207(94)90023-x

Google Scholar