[1]
Al-Shaeri, M., D. Ahmed, F. McCluskey, G. Turner, L. Paterson, E. A. Dyrynda and M. G. J. Hartl (2013). Potentiating toxicological interaction of single-walled carbon nanotubes with dissolved metals. Environ Toxicol Chem 32(12): 2701-2710.
DOI: 10.1002/etc.2365
Google Scholar
[2]
Alloy, M. M. and A. P. Roberts (2011). Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction. Ecotoxicol Environ Saf 74(7): 1839-1843.
DOI: 10.1016/j.ecoenv.2011.06.020
Google Scholar
[3]
ASTM (2014). E729-96. Standard Guide for Conducting Acute Toxicity Tests on Test materials with fishes, macroinvertebrates, and amphibians, ASTM International, West Conshohocken, PA, 2014.
DOI: 10.1520/e0729-96r14
Google Scholar
[4]
Attar, E. N. and E. J. Maly (1982). Acute toxicity of cadmium, zinc, and cadmium-zinc mixtures to Daphnia magna. Arch Environ Contam Toxicol 11(3): 291-296.
DOI: 10.1007/bf01055205
Google Scholar
[5]
Baun, A., S. N. Sørensen, R. F. Rasmussen, N. B. Hartmann and C. B. Koch (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86(3): 379-387.
DOI: 10.1016/j.aquatox.2007.11.019
Google Scholar
[6]
Bhatt, I. and B. N. Tripathi (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3): 308-317.
DOI: 10.1016/j.chemosphere.2010.10.011
Google Scholar
[7]
Biesinger, K., L. Williams and W. Schalie. (2002). Procedures for conducting 'Daphnia magna' toxicity bioassays. . USER'S GUIDE. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/8-87/011 (NTIS PB88124722).
Google Scholar
[8]
Bodar, C. W. M., C. J. Van Leeuwen, P. A. Voogt and D. I. Zandee (1988). Effect of cadmium on the reproduction strategy of Daphnia magna. Aquat Toxicol 12(4): 301-309.
DOI: 10.1016/0166-445x(88)90058-6
Google Scholar
[9]
Cheng, J., E. Flahaut and S. H. Cheng (2007). Effect of carbon nanotubes on developing zebrafish (Danio Rerio) embryos. Environ Toxicol Chem 26(4): 708-716.
DOI: 10.1897/06-272r.1
Google Scholar
[10]
Dillon, A. C., P. A. Parilla, J. L. Alleman, T. Gennett, K. M. Jones and M. J. Heben (2005). Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band. Chem. Phys. Lett. 401(4-6): 522-528.
DOI: 10.1016/j.cplett.2004.11.104
Google Scholar
[11]
Dresselhaus, M. S., G. Dresselhaus and A. Jorio (2004). Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34: 247-278.
DOI: 10.1146/annurev.matsci.34.040203.114607
Google Scholar
[12]
Environment-Canada (1990). Biological Test Method: Acute Lethality Test Using Daphnia spp. Report EPS 1/RM/11. Environment Canada, Ottawa, Ontario, Canada: 55.
Google Scholar
[13]
Ferguson, P. L., G. T. Chandler, R. C. Templeton, A. Demarco, W. A. Scrivens and B. A. Englehart (2008). Influence of sediment - Amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environ Sci Technol 42(10): 3879-3885.
DOI: 10.1021/es702830b
Google Scholar
[14]
Ferreira, A. L. G., S. Loureiro and A. M. V. M. Soares (2008). Toxicity prediction of binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna. Aquat Toxicol 89(1): 28-39.
DOI: 10.1016/j.aquatox.2008.05.012
Google Scholar
[15]
Geller, W. and H. Müller (1981). The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia 49(3): 316-321.
DOI: 10.1007/bf00347591
Google Scholar
[16]
Giusto, A., L. A. Somma and L. Ferrari (2012). Cadmium toxicity assessment in juveniles of the Austral South America amphipod Hyalella curvispina. Ecotoxicol Environ Safety 79(0): 163-169.
DOI: 10.1016/j.ecoenv.2011.12.020
Google Scholar
[17]
Hare, L. (1992). Aquatic Insects and Trace Metals: Bioavailability, Bioaccumulation, and Toxicity. Crit Rev Toxicol 22(5-6): 327-369.
DOI: 10.3109/10408449209146312
Google Scholar
[18]
Hasler, A. D. (1935). The physiology of digestion of plankton crustacea: I. Some digestive enzymes of daphnia. Biol Bull 68(2): 207-214.
DOI: 10.2307/1537264
Google Scholar
[19]
Jaroniec, M. (1983). Physical adsorption on heterogeneous solids. Adv. Colloid Interface Sci. 18(3–4): 149-225.
DOI: 10.1016/0001-8686(83)87002-x
Google Scholar
[20]
Kennedy, A. J., M. S. Hull, J. A. Steevens, K. M. Dontsova, M. A. Chappell, J. C. Gunter and C. A. Weiss Jr (2008). Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27(9): 1932-1941.
DOI: 10.1897/07-624.1
Google Scholar
[21]
Kim, K. S., G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy (2007). Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D: Appl. Phys 40(8): 2375-2387.
DOI: 10.1088/0022-3727/40/8/s17
Google Scholar
[22]
Kim, K. S., G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy (2007). Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D: Appl. Phys. 40(8): 2375-2387.
DOI: 10.1088/0022-3727/40/8/s17
Google Scholar
[23]
Lampert, W. (1987). Feeding and nutrition in Daphnia. Mem. Ist. Ital. Idrobiol 45: 143–192.
Google Scholar
[24]
Lazorchak, J. M., M. E. Smith and H. J. Haring (2009). Development and validation of a Daphnia magna four-day survival and growth test method. Environ Toxicol Chem 28(5): 1028-1034.
DOI: 10.1897/08-296.1
Google Scholar
[25]
Li, M. and C. P. Huang (2011). The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: Effect of physical-chemical treatment. Carbon 49(5): 1672-1679.
DOI: 10.1016/j.carbon.2010.12.052
Google Scholar
[26]
Li, Y.-h., Z.-c. Di, Z.-k. Luan, J. Ding, H. Zuo, X.-q. Wu, C.-L. Xu and D.-h. Wu (2004). Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics. J. Environ. Sci 16(2): 208-211.
Google Scholar
[27]
Li, Y.-H., Z. Di, J. Ding, D. Wu, Z. Luan and Y. Zhu (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4): 605-609.
DOI: 10.1016/j.watres.2004.11.004
Google Scholar
[28]
Lu, C., H. Chiu and C. Liu (2006). Removal of Zinc(Iijima) from Aqueous Solution by Purified Carbon Nanotubes: Kinetics and Equilibrium Studies. Ind Eng Chem Res 45(8): 2850-2855.
DOI: 10.1021/ie051206h
Google Scholar
[29]
Martinez, D. S. T., O. L. Alves and E. Barbieri (2013). Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J. Phys Conference Series 429(1).
DOI: 10.1088/1742-6596/429/1/012043
Google Scholar
[30]
Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8): 967-976.
DOI: 10.1016/j.envint.2006.06.014
Google Scholar
[31]
Moradi, O., K. Zare and M. Yari (2011). Interaction of some heavy metal ions with single walled carbon nanotube. Int J Nano Dimens 1(3): 203-220.
Google Scholar
[32]
Mwangi, J. N., N. Wang, C. G. Ingersoll, D. K. Hardesty, E. L. Brunson, H. Li and B. Deng (2012). Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ Toxicol Chem 31(8): 1823-1830.
DOI: 10.1002/etc.1888
Google Scholar
[33]
OECD Test No. 211: Daphnia magna Reproduction Test, OECD Publishing.
Google Scholar
[34]
Pennak (1978). Cladocera (water fleas). In Freshwater invertebrates of the United States. John Wiley & Sons, New York.
Google Scholar
[35]
Petersen, E. J., J. Akkanen, J. V. K. Kukkonen and W. J. Weber (2009). Biological Uptake and Depuration of Carbon Nanotubes by Daphnia magna. Environ Sci Technol 43(8): 2969-2975.
DOI: 10.1021/es8029363
Google Scholar
[36]
Petersen, E. J., J. Akkanen, J. V. K. Kukkonen and W. J. Weber (2009). Biological Uptake and Depuration of Carbon Nanotubes by Daphnia magna. Environmental Science & Technology 43(8): 2969-2975.
DOI: 10.1021/es8029363
Google Scholar
[37]
Petersen, E. J., R. A. Pinto, D. J. Mai, P. F. Landrum and W. J. Weber Jr (2011). Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna. Environ Sci Technol 45(3): 1133-1138.
DOI: 10.1021/es1030239
Google Scholar
[38]
Qu, R., X. Wang, Z. Wang, Z. Wei and L. Wang (2014). Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater 275: 89-98.
DOI: 10.1016/j.jhazmat.2014.04.051
Google Scholar
[39]
Qu, R. J., X. H. Wang, M. B. Feng, Y. Li, H. X. Liu, L. S. Wang and Z. Y. Wang (2013). The toxicity of cadmium to three aquatic organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) under different pH levels. Ecotoxicol Environ Safety 95(0): 83-90.
DOI: 10.1016/j.ecoenv.2013.05.020
Google Scholar
[40]
Souid, G., N. Souayed, F. Yaktiti and K. Maaroufi (2013). Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicol Environ Safety 89(0): 1-7.
DOI: 10.1016/j.ecoenv.2012.12.015
Google Scholar
[41]
Tan, C., K. Tan, Y. Ong, A. Mohamed, S. Zein and S. Tan (2012). Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10(3): 265-273.
DOI: 10.1007/s10311-012-0356-4
Google Scholar
[42]
Templeton, R. C., P. L. Ferguson, K. M. Washburn, W. A. Scrivens and G. T. Chandler (2006). Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40(23): 7387-7393.
DOI: 10.1021/es060407p
Google Scholar
[43]
Toh, R. J., A. Ambrosi and M. Pumera (2012). Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication. Chem Eur J 18(37): 11593-11596.
DOI: 10.1002/chem.201201955
Google Scholar
[44]
USGS. Mineral Commodity Summaries. U.S. Geological Survey: 36-37. (2013)
Google Scholar
[45]
Vellinger, C., M. Parant, P. Rousselle, F. Immel, P. Wagner and P. Usseglio-Polatera (2012). Comparison of arsenate and cadmium toxicity in a freshwater amphipod (Gammarus pulex). Environ Poll 160(0): 66-73.
DOI: 10.1016/j.envpol.2011.09.002
Google Scholar
[46]
Wang, W. X. and P. S. Rainbow (2006). Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ Chem 3(6): 395-399.
DOI: 10.1071/en06055
Google Scholar
[47]
Weltens, R., R. Goossens and S. Van Puymbroeck (2000). Ecotoxicity of Contaminated Suspended Solids for Filter Feeders (Daphnia magna). Arch Environ Contam Toxicol 39(3): 315-323.
DOI: 10.1007/s002440010110
Google Scholar
[48]
Weltens, R., R. Goossens and S. Van Puymbroeck (2000). Ecotoxicity of Contaminated Suspended Solids for Filter Feeders (Daphnia magna). Arch Environ Contam Toxicol 39(3): 315-323.
DOI: 10.1007/s002440010110
Google Scholar
[49]
Wen-Hong, F., G. Tang, C. M. Zhao, Y. Duan and R. Zhang (2009). Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure. Environ Toxicol Chem 28(2): 305-310.
DOI: 10.1897/07-639.1
Google Scholar
[50]
Wijnhoven, S., Ir. A.G. Oomen, A.J.A.M. Sips, F.C. Bourgeois, G.J.P.M. te Dorsthorst, M.W. Kooi and M. I. Bakker (2011). Development of an inventory for consumer products containing nanomaterials Final Report. ENV/D3/SER/2010/0060r European commission.
Google Scholar
[51]
Youn, S., R. Wang, J. Gao, A. Hovespyan, K. J. Ziegler, J. C. J. Bonzongo and G. Bitton (2012). Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology 6(2): 161-172.
DOI: 10.3109/17435390.2011.562329
Google Scholar