Toxic Effect of Single Walled Carbon Nanotubes Combined with Cadmium to the Crustacean Daphnia magna

Article Preview

Abstract:

The aim of this study was to assess the impact of single-walled carbon nanotubes (SWCNT) on the toxicity of cadmium (Cd) using the crustacean Daphnia magna. LC50 of Cd and SWCNT alone and combined were calculated and compared. Sorption of Cd on SWCNT was also quantified in separate batch experiments. Results showed that the maximum adsorption of Cd onto SWCNT calculated by the Langmuir equation was 24.4 mg kg-1. LC50s for Cd and SWCNT alone were 252.3 µg L-1 and 1400 µg L-1, respectively. In the presence of 500 and 1000 µg L-1 of SWCNT, Cd LC50s were 127.2 and 120.1 µg L-1 respectively. Therefore, Cd toxicity increased when organisms were exposed to both contaminants which indicated that SWCNT induces a synergistic toxic effect on the survival of D. magna. It appears that even if SWCNT had a low adsorption capacity for Cd, toxicity of the metal can be increased. Our study shows the complexity of SWCNT toxicity and how the understanding of their interactions with other contaminants is crucial to determine the consequences of their release into the environment.

Info:

* - Corresponding Author

[1] Al-Shaeri, M., D. Ahmed, F. McCluskey, G. Turner, L. Paterson, E. A. Dyrynda and M. G. J. Hartl (2013). Potentiating toxicological interaction of single-walled carbon nanotubes with dissolved metals. Environ Toxicol Chem 32(12): 2701-2710.

DOI: 10.1002/etc.2365

Google Scholar

[2] Alloy, M. M. and A. P. Roberts (2011). Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction. Ecotoxicol Environ Saf 74(7): 1839-1843.

DOI: 10.1016/j.ecoenv.2011.06.020

Google Scholar

[3] ASTM (2014). E729-96. Standard Guide for Conducting Acute Toxicity Tests on Test materials with fishes, macroinvertebrates, and amphibians, ASTM International, West Conshohocken, PA, 2014.

DOI: 10.1520/e0729-96r14

Google Scholar

[4] Attar, E. N. and E. J. Maly (1982). Acute toxicity of cadmium, zinc, and cadmium-zinc mixtures to Daphnia magna. Arch Environ Contam Toxicol 11(3): 291-296.

DOI: 10.1007/bf01055205

Google Scholar

[5] Baun, A., S. N. Sørensen, R. F. Rasmussen, N. B. Hartmann and C. B. Koch (2008). Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60. Aquat Toxicol 86(3): 379-387.

DOI: 10.1016/j.aquatox.2007.11.019

Google Scholar

[6] Bhatt, I. and B. N. Tripathi (2011). Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3): 308-317.

DOI: 10.1016/j.chemosphere.2010.10.011

Google Scholar

[7] Biesinger, K., L. Williams and W. Schalie. (2002). Procedures for conducting 'Daphnia magna' toxicity bioassays. . USER'S GUIDE. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/8-87/011 (NTIS PB88124722).

Google Scholar

[8] Bodar, C. W. M., C. J. Van Leeuwen, P. A. Voogt and D. I. Zandee (1988). Effect of cadmium on the reproduction strategy of Daphnia magna. Aquat Toxicol 12(4): 301-309.

DOI: 10.1016/0166-445x(88)90058-6

Google Scholar

[9] Cheng, J., E. Flahaut and S. H. Cheng (2007). Effect of carbon nanotubes on developing zebrafish (Danio Rerio) embryos. Environ Toxicol Chem 26(4): 708-716.

DOI: 10.1897/06-272r.1

Google Scholar

[10] Dillon, A. C., P. A. Parilla, J. L. Alleman, T. Gennett, K. M. Jones and M. J. Heben (2005). Systematic inclusion of defects in pure carbon single-wall nanotubes and their effect on the Raman D-band. Chem. Phys. Lett. 401(4-6): 522-528.

DOI: 10.1016/j.cplett.2004.11.104

Google Scholar

[11] Dresselhaus, M. S., G. Dresselhaus and A. Jorio (2004). Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34: 247-278.

DOI: 10.1146/annurev.matsci.34.040203.114607

Google Scholar

[12] Environment-Canada (1990). Biological Test Method: Acute Lethality Test Using Daphnia spp. Report EPS 1/RM/11. Environment Canada, Ottawa, Ontario, Canada: 55.

Google Scholar

[13] Ferguson, P. L., G. T. Chandler, R. C. Templeton, A. Demarco, W. A. Scrivens and B. A. Englehart (2008). Influence of sediment - Amendment with single-walled carbon nanotubes and diesel soot on bioaccumulation of hydrophobic organic contaminants by benthic invertebrates. Environ Sci Technol 42(10): 3879-3885.

DOI: 10.1021/es702830b

Google Scholar

[14] Ferreira, A. L. G., S. Loureiro and A. M. V. M. Soares (2008). Toxicity prediction of binary combinations of cadmium, carbendazim and low dissolved oxygen on Daphnia magna. Aquat Toxicol 89(1): 28-39.

DOI: 10.1016/j.aquatox.2008.05.012

Google Scholar

[15] Geller, W. and H. Müller (1981). The filtration apparatus of Cladocera: Filter mesh-sizes and their implications on food selectivity. Oecologia 49(3): 316-321.

DOI: 10.1007/bf00347591

Google Scholar

[16] Giusto, A., L. A. Somma and L. Ferrari (2012). Cadmium toxicity assessment in juveniles of the Austral South America amphipod Hyalella curvispina. Ecotoxicol Environ Safety 79(0): 163-169.

DOI: 10.1016/j.ecoenv.2011.12.020

Google Scholar

[17] Hare, L. (1992). Aquatic Insects and Trace Metals: Bioavailability, Bioaccumulation, and Toxicity. Crit Rev Toxicol 22(5-6): 327-369.

DOI: 10.3109/10408449209146312

Google Scholar

[18] Hasler, A. D. (1935). The physiology of digestion of plankton crustacea: I. Some digestive enzymes of daphnia. Biol Bull 68(2): 207-214.

DOI: 10.2307/1537264

Google Scholar

[19] Jaroniec, M. (1983). Physical adsorption on heterogeneous solids. Adv. Colloid Interface Sci. 18(3–4): 149-225.

DOI: 10.1016/0001-8686(83)87002-x

Google Scholar

[20] Kennedy, A. J., M. S. Hull, J. A. Steevens, K. M. Dontsova, M. A. Chappell, J. C. Gunter and C. A. Weiss Jr (2008). Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27(9): 1932-1941.

DOI: 10.1897/07-624.1

Google Scholar

[21] Kim, K. S., G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy (2007). Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D: Appl. Phys 40(8): 2375-2387.

DOI: 10.1088/0022-3727/40/8/s17

Google Scholar

[22] Kim, K. S., G. Cota-Sanchez, C. T. Kingston, M. Imris, B. Simard and G. Soucy (2007). Large-scale production of single-walled carbon nanotubes by induction thermal plasma. J. Phys. D: Appl. Phys. 40(8): 2375-2387.

DOI: 10.1088/0022-3727/40/8/s17

Google Scholar

[23] Lampert, W. (1987). Feeding and nutrition in Daphnia. Mem. Ist. Ital. Idrobiol 45: 143–192.

Google Scholar

[24] Lazorchak, J. M., M. E. Smith and H. J. Haring (2009). Development and validation of a Daphnia magna four-day survival and growth test method. Environ Toxicol Chem 28(5): 1028-1034.

DOI: 10.1897/08-296.1

Google Scholar

[25] Li, M. and C. P. Huang (2011). The responses of Ceriodaphnia dubia toward multi-walled carbon nanotubes: Effect of physical-chemical treatment. Carbon 49(5): 1672-1679.

DOI: 10.1016/j.carbon.2010.12.052

Google Scholar

[26] Li, Y.-h., Z.-c. Di, Z.-k. Luan, J. Ding, H. Zuo, X.-q. Wu, C.-L. Xu and D.-h. Wu (2004). Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics. J. Environ. Sci 16(2): 208-211.

Google Scholar

[27] Li, Y.-H., Z. Di, J. Ding, D. Wu, Z. Luan and Y. Zhu (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4): 605-609.

DOI: 10.1016/j.watres.2004.11.004

Google Scholar

[28] Lu, C., H. Chiu and C. Liu (2006). Removal of Zinc(Iijima) from Aqueous Solution by Purified Carbon Nanotubes:  Kinetics and Equilibrium Studies. Ind Eng Chem Res 45(8): 2850-2855.

DOI: 10.1021/ie051206h

Google Scholar

[29] Martinez, D. S. T., O. L. Alves and E. Barbieri (2013). Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J. Phys Conference Series 429(1).

DOI: 10.1088/1742-6596/429/1/012043

Google Scholar

[30] Moore, M. N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8): 967-976.

DOI: 10.1016/j.envint.2006.06.014

Google Scholar

[31] Moradi, O., K. Zare and M. Yari (2011). Interaction of some heavy metal ions with single walled carbon nanotube. Int J Nano Dimens 1(3): 203-220.

Google Scholar

[32] Mwangi, J. N., N. Wang, C. G. Ingersoll, D. K. Hardesty, E. L. Brunson, H. Li and B. Deng (2012). Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ Toxicol Chem 31(8): 1823-1830.

DOI: 10.1002/etc.1888

Google Scholar

[33] OECD Test No. 211: Daphnia magna Reproduction Test, OECD Publishing.

Google Scholar

[34] Pennak (1978). Cladocera (water fleas). In Freshwater invertebrates of the United States. John Wiley & Sons, New York.

Google Scholar

[35] Petersen, E. J., J. Akkanen, J. V. K. Kukkonen and W. J. Weber (2009). Biological Uptake and Depuration of Carbon Nanotubes by Daphnia magna. Environ Sci Technol 43(8): 2969-2975.

DOI: 10.1021/es8029363

Google Scholar

[36] Petersen, E. J., J. Akkanen, J. V. K. Kukkonen and W. J. Weber (2009). Biological Uptake and Depuration of Carbon Nanotubes by Daphnia magna. Environmental Science & Technology 43(8): 2969-2975.

DOI: 10.1021/es8029363

Google Scholar

[37] Petersen, E. J., R. A. Pinto, D. J. Mai, P. F. Landrum and W. J. Weber Jr (2011). Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna. Environ Sci Technol 45(3): 1133-1138.

DOI: 10.1021/es1030239

Google Scholar

[38] Qu, R., X. Wang, Z. Wang, Z. Wei and L. Wang (2014). Metal accumulation and antioxidant defenses in the freshwater fish Carassius auratus in response to single and combined exposure to cadmium and hydroxylated multi-walled carbon nanotubes. J Hazard Mater 275: 89-98.

DOI: 10.1016/j.jhazmat.2014.04.051

Google Scholar

[39] Qu, R. J., X. H. Wang, M. B. Feng, Y. Li, H. X. Liu, L. S. Wang and Z. Y. Wang (2013). The toxicity of cadmium to three aquatic organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) under different pH levels. Ecotoxicol Environ Safety 95(0): 83-90.

DOI: 10.1016/j.ecoenv.2013.05.020

Google Scholar

[40] Souid, G., N. Souayed, F. Yaktiti and K. Maaroufi (2013). Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicol Environ Safety 89(0): 1-7.

DOI: 10.1016/j.ecoenv.2012.12.015

Google Scholar

[41] Tan, C., K. Tan, Y. Ong, A. Mohamed, S. Zein and S. Tan (2012). Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10(3): 265-273.

DOI: 10.1007/s10311-012-0356-4

Google Scholar

[42] Templeton, R. C., P. L. Ferguson, K. M. Washburn, W. A. Scrivens and G. T. Chandler (2006). Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40(23): 7387-7393.

DOI: 10.1021/es060407p

Google Scholar

[43] Toh, R. J., A. Ambrosi and M. Pumera (2012). Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication. Chem Eur J 18(37): 11593-11596.

DOI: 10.1002/chem.201201955

Google Scholar

[44] USGS. Mineral Commodity Summaries. U.S. Geological Survey: 36-37. (2013)

Google Scholar

[45] Vellinger, C., M. Parant, P. Rousselle, F. Immel, P. Wagner and P. Usseglio-Polatera (2012). Comparison of arsenate and cadmium toxicity in a freshwater amphipod (Gammarus pulex). Environ Poll 160(0): 66-73.

DOI: 10.1016/j.envpol.2011.09.002

Google Scholar

[46] Wang, W. X. and P. S. Rainbow (2006). Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ Chem 3(6): 395-399.

DOI: 10.1071/en06055

Google Scholar

[47] Weltens, R., R. Goossens and S. Van Puymbroeck (2000). Ecotoxicity of Contaminated Suspended Solids for Filter Feeders (Daphnia magna). Arch Environ Contam Toxicol 39(3): 315-323.

DOI: 10.1007/s002440010110

Google Scholar

[48] Weltens, R., R. Goossens and S. Van Puymbroeck (2000). Ecotoxicity of Contaminated Suspended Solids for Filter Feeders (Daphnia magna). Arch Environ Contam Toxicol 39(3): 315-323.

DOI: 10.1007/s002440010110

Google Scholar

[49] Wen-Hong, F., G. Tang, C. M. Zhao, Y. Duan and R. Zhang (2009). Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure. Environ Toxicol Chem 28(2): 305-310.

DOI: 10.1897/07-639.1

Google Scholar

[50] Wijnhoven, S., Ir. A.G. Oomen, A.J.A.M. Sips, F.C. Bourgeois, G.J.P.M. te Dorsthorst, M.W. Kooi and M. I. Bakker (2011). Development of an inventory for consumer products containing nanomaterials Final Report. ENV/D3/SER/2010/0060r European commission.

Google Scholar

[51] Youn, S., R. Wang, J. Gao, A. Hovespyan, K. J. Ziegler, J. C. J. Bonzongo and G. Bitton (2012). Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: Pseudokirchneriella subcapitata. Nanotoxicology 6(2): 161-172.

DOI: 10.3109/17435390.2011.562329

Google Scholar