Role of Nanoplanktons in Marine Food-Webs

Article Preview

Abstract:

Nanoplanktons are ubiquitous protozoan zooplankton in a size range of 2 to 20 μm, play key ecological roles in aquatic ecosystems. Heterotrophic nanoflagellates are distributed through the continental shelf and margin area of the oceans as well as deep-sea. These organisms contribute significantly to the total living biomass within these systems, serve as the major top–down control on bacterial assemblages, and are an important source of mortality for microalgae and other heterotrophic nanoflagellates. From many recent studies, it is generally accepted that HNF is one of the most important bacterial consumers. They also function as important remineralizers of organic matter and nutrients in aquatic systems. In accordance with these important ecological roles, heterotrophic nanoflagellates have been the subject of considerable study both in the field and laboratory.

Info:

Pages:

38-47

Citation:

Online since:

July 2015

Export:

Share:

Citation:

* - Corresponding Author

[1] Adrian, R. 1991. Filtering and feeding rates of cyclopoid copepods feeding on phytoplankton. Hydrobiologia 210: 217-223.

DOI: 10.1007/bf00034680

Google Scholar

[2] Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA & Thingstad F (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263

DOI: 10.3354/meps010257

Google Scholar

[3] Ballintine, J. 1953. Comparison of the different methods of estimating nanoplankton. J. Mar. Biol. Assoc. U. K. 32: 129-147

Google Scholar

[4] Barsdate, R. J., T. Fenchel and R. T. Prentki. 1974. Ph~sphorous cycle of a model ecosystem: significance for decomposer food chains and effect of bacterial grazers. Oikos. 25: 239-251

DOI: 10.2307/3543942

Google Scholar

[5] Beaver, J.R. and T.L. Crisman. 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology 17: 111-136.

DOI: 10.1007/bf02011847

Google Scholar

[6] Christoffersen K, B. Riemann, A. Klysner, and M. Sondergaard. 1993. Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnology and Oceanography 38: 561-573.

DOI: 10.4319/lo.1993.38.3.0561

Google Scholar

[7] Christoffersen, K., B. Riemann, L.R. Hansen, A. Klysner, and H.B. Sorensen 1990. Qualitative importance of the microbial loop and plankton community structure in a eutrophic lake during a bloom of cyanobacteria. Microbial Ecology 20: 253-272.

DOI: 10.1007/bf02543881

Google Scholar

[8] Cole JJ, Findlay S & Pace MJ (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43: 1–10

DOI: 10.3354/meps043001

Google Scholar

[9] Cole, J.J. and N.F. Caraco. 1993. The pelagic microbial food web of oligotrophic lakes., pp.101-111. In T.E. Ford [ed.], Aquatic microbiology. An ecological approach. Blackwell Scientific Publications

Google Scholar

[10] Daggett, P., and T. A. Nerad. 1982. Axenic cultivation of Bodo edax and Bodo ancinatus and observations on feeding rate in monoaxenic culture. Abst.30. J. Protozool. 29: 290-291.

Google Scholar

[11] Davis, P. G. and J. McN. Sieburth. 1982. Differentiation of phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescent microscopy. Annls. Inst. Oceanogr., Paris 58(S): 249-260.

Google Scholar

[12] Dussart, G. 1965. Les differentes categories de planction. Hydrobiologia 26: 72- 74. Estep, K., P. G. Davis, M. D. Keller and J. McN Sieburth. 1986. How important are algal nanoflagellates in bactivory. Limnol. Oceanogr. 31: 646-650.

DOI: 10.4319/lo.1986.31.3.0646

Google Scholar

[13] Fenchel, T. 1982a. Ecology of heterotrophic microflagellates I. Some important forms. Mar. Ecol. Prog. Ser. 8: 211-233.

DOI: 10.3354/meps008211

Google Scholar

[14] Fenchel, T. 1982b. Ecology of heterotrophic microflagellates II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225-231.

DOI: 10.3354/meps008225

Google Scholar

[15] Fenchel, T. 1982c. Ecology of heterotrophic microflagellates II. Adaptations to heterogeneous environment. Mar. Ecol. Prog. Ser. 9: 25-33

DOI: 10.3354/meps009025

Google Scholar

[16] Fenchel, T. 1982d. Ecology of heterotrophic microflagellates IV. Quantitative, importance and occurrence as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35-42.

DOI: 10.3354/meps009035

Google Scholar

[17] Finlay K, Roff JC (2004) Radiotracer determination of the diet of calanoid copepod nauplii and copepodites in a temperate estuary. Ices Journal of Marine Science 61:552-562.

DOI: 10.1016/j.icesjms.2004.03.010

Google Scholar

[19] Gasol JM (1994) A framework for the assessment of top-down vs bottom-up control of heterotrophic nanoflagellate abundance. Mar Ecol Prog Ser 113: 291- 300.

DOI: 10.3354/meps113291

Google Scholar

[20] Gasol JM, Simons AM, Kalff J (1995) Patterns in the top-down versus bottom- up regulation of heterotrophic nanoflagellates in temperate lakes. J Plankton Res 17: 1879-1903.

DOI: 10.1093/plankt/17.10.1879

Google Scholar

[21] Goldman, J. C. and D. A. Caron. 1985. Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain. Deep Sea Res. 32: 899-915

DOI: 10.1016/0198-0149(85)90035-4

Google Scholar

[22] Goldman, J. C., D. A. Caron, 0. Ketil Andersen and M. R. Dennett. 1985. Nutrient cycling in a microflagellate food chain I. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24: 231-242.

DOI: 10.3354/meps024231

Google Scholar

[23] Gude H. 1979. Grazing by protozoa as a selection factor for activated sludge. Microb. Ecol. 5: 225-237.

DOI: 10.1007/bf02013529

Google Scholar

[24] Haas L. W. and K. L. Webb. 1979. Nutritional mode of several non-pigmented microflagellates from the York river estuary, Virginnia. J. Exp. Mar. Biol.Ecol. 39: 125-134.

DOI: 10.1016/0022-0981(79)90009-1

Google Scholar

[25] Hilliard, D. K. 1971. Notes on the occurrence and taxonomy of some planktonic Chrysophytes in an Alaskan lake, with comments on the genus Bicoeca. Arch. Protistenk. D.113: 98-122.

Google Scholar

[26] Hobbie, J. E., R. J. Daley and S. Jasper. 1977. Use of Nuclepore filters for counting bacteria by fluorescent microscopy. Appl. Environ. Microbiol. 33: 1225- 1228.

DOI: 10.1128/aem.33.5.1225-1228.1977

Google Scholar

[27] Jansson M, Bergström A-K, Blomqvist P, Isaksson A & Jonsson A (1999) Impact of allochthonous organic carbon on microbial food web carbon dynamics and structure in Lake Örträsket. Archiv für Hydrobiologie 144: 409–428

DOI: 10.1127/archiv-hydrobiol/144/1999/409

Google Scholar

[28] Jurgens, K., S.A. Wickham, K.O. Rothhaupt, and B. Santer. 1996. Feeding rates of macro- and microzooplankton on heterotrophic nanoflagellates. Limnology and Oceanography 41: 1833-1839.

DOI: 10.4319/lo.1996.41.8.1833

Google Scholar

[29] Kopylov, A. I. and E. F. Moiseev. 1980. Effect of colourless flagellates on the determination of bacterial production in seawater. Hydrobiology 252:503-505

Google Scholar

[30] Kopylov, A. I., A. F. Pasternak and Y. V. Moiseev. 1981. Consumption of flagellates by planktonic organisms. Oceanology 2 1: 269-271

Google Scholar

[32] Landry M. R. and R. P. Hassett. 1982. Estimating the grazing impact of marine microzooplankton. Mar. Biol. 67: 283-288

Google Scholar

[33] Leadbeater, B. S. C. and C. Morton. 1974. A microscopical study of a marine species of Codnosiqa James -Clark (Choanoflagellate) with special reference to the ingestion of bacteria. Bot. J. Linn. Soc. 6: 337-347.

DOI: 10.1111/j.1095-8312.1974.tb00728.x

Google Scholar

[34] Levine, N. D et al. 1980. A Newly Revised Classification of Protozoa. J. Protozool. 27: 37-58.

Google Scholar

[35] Lighthart, B. 1969. Planktonic and benthic bacterivorous protozoa at 11 stations in the Puget Sound and adjacent Pacific Ocean. J. Fish. Res. Bd. Can. 26:299-306.

DOI: 10.1139/f69-030

Google Scholar

[36] Perry, J.J., J.T. Staley, and S. Lory. 2002. Microbial life. Sinauer Associates, Inc. Reuman DC, Cohen JE (2004) Trophic links' length and slope in the Tuesday Lake food web with species' body mass and numerical abundance J Anim Ecol 73: 852-866

DOI: 10.1111/j.0021-8790.2004.00856.x

Google Scholar

[37] Rassoulzadegan F, Lavalpeuto M, Sheldon RW (1988) Partitioning of the food ration of marine ciliates between picoplankton and nanoplankton. Hydrobiologia 159: 75-88

DOI: 10.1007/bf00007369

Google Scholar

[38] Rassoulzadegan F, Sheldon RW (1986) Predator-prey interactions of nanozooplankton and bacteria in an oligotrophic marine-environment Limnol Oceanogr 31: 1010-1021

DOI: 10.4319/lo.1986.31.5.1010

Google Scholar

[39] Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81: 293-308

DOI: 10.1023/a:1020591307260

Google Scholar

[40] Sieburth J McN, Davis PG (1982) The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean seas. Ann Inst Oceanogr Paris 58: 285-296.

Google Scholar

[41] Sieburth, J. McN. and P. G. Davis. 1982. The role .of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Seas.

Google Scholar

[42] Annls. Inst. Oceanogr. Paris. 58(S): 285-296.

Google Scholar

[43] Stockner JG & Porter KG (1988) Microbial food webs in freshwater planktonic ecosystems. In Complex Interactions in Lake Communities (Ed Carpenter SR), Springer Verlag, New York, p.69–84.

DOI: 10.1007/978-1-4612-3838-6_5

Google Scholar