[1]
N.A.W van Riel, Dynamic modeling and analysis of biochemical networks: mechanism-based models and model-based experiments, Briefings in bioinformatics 7(4) (2006) 364-374.
DOI: 10.1093/bib/bbl040
Google Scholar
[2]
L.M. Loew, J.C. Schaff, The Virtual Cell: a software environment for computational cell biology, Trends in Biotechnology 19(10) (2001) 401–406.
DOI: 10.1016/s0167-7799(01)01740-1
Google Scholar
[3]
D. Dröge, Free radicals in the physiological control of cell function, Physiological reviews, 82(1) (2002), 47-95.
DOI: 10.1152/physrev.00018.2001
Google Scholar
[4]
G.P. Robb and I. Steinberg, Visualization of the chambers of the heart pulmonary circulation and the great blood vessels in man: summary of method and results, JAMA (1940) 474-480.
DOI: 10.1001/jama.1940.02810060020005
Google Scholar
[5]
J.D. Coffin, T.J. Poole, Endothelial cell origin and migration in embryonic heart and cranial blood vessel development, Anat. Rec. 231(3) (1991) 383-95.
DOI: 10.1002/ar.1092310312
Google Scholar
[6]
D.J. Kurz, B. Naegeli, O. Bertel, A double-blind, randomized study of the effect of immediate intravenous nitroglycerin on the incidence of postprocedural chest pain and minor myocardial necrosis after elective coronary stenting, Am. Heart J. 139(1) (2000) 35-43.
DOI: 10.1016/s0002-8703(00)90306-5
Google Scholar
[7]
T. Münzel, H. Li, H. Mollnau, U. Hink, E. Matheis, M. Hartmann, M. Oelze, M. Skatchkov, A. Warnholtz, L. Duncker, T. Meinertz, U. Förstermann, Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III–mediated superoxide production, and vascular NO bioavailability, Circ. Res.86 (1) (2000) E7-E12.
DOI: 10.1161/01.res.86.1.e7
Google Scholar
[8]
R.F. Furchgott , J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288 (1980) 373-6.
DOI: 10.1038/288373a0
Google Scholar
[9]
R.F. Furchgott, P.D. Cherry, J.V. Zawadzki, D. Jothianandan, Endothelial cells as mediators of vasodilation of arteries, J. Cardiovasc. Pharmacol. 6(2) (1984) S336-343.
DOI: 10.1097/00005344-198406002-00008
Google Scholar
[10]
Y. Hirooka, T. Imaizumi, T. Tagawa, M. Shiramoto, T. Endo, S. Ando, A. Takeshita, Effects of L-arginine on impaired acetylcholine-induced and ischemic vasodilation of the forearm in patients with heart failure, Circulation 90(2) (1984) 658-668.
DOI: 10.1161/01.cir.90.2.658
Google Scholar
[11]
J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, fifth edition, New York: W. H. Freeman, 2002.
Google Scholar
[12]
H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Molecular Cell Biology, fourth edition, New York: W.H. Freeman, 2000.
DOI: 10.1016/s1470-8175(01)00023-6
Google Scholar
[13]
P. Taylor, J.H. Brown, Synthesis Storage and Release of Acetylcholine, in: G.J. Siegel, B.W. Agranoff, R.W. Alberts (Eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, sixth edition, Philadelphia: Lippincott-Raven, 1999.
Google Scholar
[14]
Information on http://med.stanford.edu/news/all-news/2010/02/virtual-cell-could-bring-benefits-of-simulation-to-biology.html
Google Scholar
[15]
M. Klem, Nitric oxide metabolism and breakdown, Biochimica et Biophysica Acta (BBA) Bioenergetics, 1411 (2)(1999) 273-289.
DOI: 10.1016/s0005-2728(99)00020-1
Google Scholar
[16]
J.T.S. Hakim, K. Sugimori, E.M. Camporesi, G. Anderson, Half-life of nitric oxide in aqueous solutions with and without haemoglobin, Physiol Meas.17(4) (1996) 267-277.
DOI: 10.1088/0967-3334/17/4/004
Google Scholar
[17]
T.R. Sahrawat, S. Bhalla, Identification of Critical Target Protein for Cystic Fibrosis using Systems Biology Network Approach, Int. J. Bioautomation 17(2013) 227-240.
Google Scholar