Time-Dependent Model to Mimic Acetylcholine Induced Vasodilatation in Arterial Smooth Muscle Cells

Article Preview

Abstract:

Computational approaches for spatial modeling of dynamics of the intercellular distribution of molecules can parse, simplify, classify and organize the spatiotemporal richness of any biochemical pathway and demonstrate its impact on the cells function by simply coupling it with the downstream effecters. One such online system biology modeling package is Virtual cell that provides a unique open source software and it’s used for making mathematical models to simulate the cytoplasmic control of molecule that interact to produce certain cellular behavior. In our present study, a spatial model for time dependent acetylcholine induced relaxation of vascular endothelial cells lining the lumen of blood vessel that regulate the contractility of the arteries was generated. The time-dependent action of neurotransmitter acetylcholine for total time period for 1 second was studied on the endothelial cell at an interval of every 0.05 seconds. Such time simulated spatial models may be useful for testing and developing new hypotheses, interpretation of results and understand the dynamic behavior of cells.

Info:

* - Corresponding Author

[1] N.A.W van Riel, Dynamic modeling and analysis of biochemical networks: mechanism-based models and model-based experiments, Briefings in bioinformatics 7(4) (2006) 364-374.

DOI: 10.1093/bib/bbl040

Google Scholar

[2] L.M. Loew, J.C. Schaff, The Virtual Cell: a software environment for computational cell biology, Trends in Biotechnology 19(10) (2001) 401–406.

DOI: 10.1016/s0167-7799(01)01740-1

Google Scholar

[3] D. Dröge, Free radicals in the physiological control of cell function, Physiological reviews, 82(1) (2002), 47-95.

DOI: 10.1152/physrev.00018.2001

Google Scholar

[4] G.P. Robb and I. Steinberg, Visualization of the chambers of the heart pulmonary circulation and the great blood vessels in man: summary of method and results, JAMA (1940) 474-480.

DOI: 10.1001/jama.1940.02810060020005

Google Scholar

[5] J.D. Coffin, T.J. Poole, Endothelial cell origin and migration in embryonic heart and cranial blood vessel development, Anat. Rec. 231(3) (1991) 383-95.

DOI: 10.1002/ar.1092310312

Google Scholar

[6] D.J. Kurz, B. Naegeli, O. Bertel, A double-blind, randomized study of the effect of immediate intravenous nitroglycerin on the incidence of postprocedural chest pain and minor myocardial necrosis after elective coronary stenting, Am. Heart J. 139(1) (2000) 35-43.

DOI: 10.1016/s0002-8703(00)90306-5

Google Scholar

[7] T. Münzel, H. Li, H. Mollnau, U. Hink, E. Matheis, M. Hartmann, M. Oelze, M. Skatchkov, A. Warnholtz, L. Duncker, T. Meinertz, U. Förstermann, Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III–mediated superoxide production, and vascular NO bioavailability, Circ. Res.86 (1) (2000) E7-E12.

DOI: 10.1161/01.res.86.1.e7

Google Scholar

[8] R.F. Furchgott , J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288 (1980) 373-6.

DOI: 10.1038/288373a0

Google Scholar

[9] R.F. Furchgott, P.D. Cherry, J.V. Zawadzki, D. Jothianandan, Endothelial cells as mediators of vasodilation of arteries, J. Cardiovasc. Pharmacol. 6(2) (1984) S336-343.

DOI: 10.1097/00005344-198406002-00008

Google Scholar

[10] Y. Hirooka, T. Imaizumi, T. Tagawa, M. Shiramoto, T. Endo, S. Ando, A. Takeshita, Effects of L-arginine on impaired acetylcholine-induced and ischemic vasodilation of the forearm in patients with heart failure, Circulation 90(2) (1984) 658-668.

DOI: 10.1161/01.cir.90.2.658

Google Scholar

[11] J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemistry, fifth edition, New York: W. H. Freeman, 2002.

Google Scholar

[12] H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Molecular Cell Biology, fourth edition, New York: W.H. Freeman, 2000.

DOI: 10.1016/s1470-8175(01)00023-6

Google Scholar

[13] P. Taylor, J.H. Brown, Synthesis Storage and Release of Acetylcholine, in: G.J. Siegel, B.W. Agranoff, R.W. Alberts (Eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects, sixth edition, Philadelphia: Lippincott-Raven, 1999.

Google Scholar

[14] Information on http://med.stanford.edu/news/all-news/2010/02/virtual-cell-could-bring-benefits-of-simulation-to-biology.html

Google Scholar

[15] M. Klem, Nitric oxide metabolism and breakdown, Biochimica et Biophysica Acta (BBA) Bioenergetics, 1411 (2)(1999) 273-289.

DOI: 10.1016/s0005-2728(99)00020-1

Google Scholar

[16] J.T.S. Hakim, K. Sugimori, E.M. Camporesi, G. Anderson, Half-life of nitric oxide in aqueous solutions with and without haemoglobin, Physiol Meas.17(4) (1996) 267-277.

DOI: 10.1088/0967-3334/17/4/004

Google Scholar

[17] T.R. Sahrawat, S. Bhalla, Identification of Critical Target Protein for Cystic Fibrosis using Systems Biology Network Approach, Int. J. Bioautomation 17(2013) 227-240.

Google Scholar