[1]
Bellomo R, Ronco C, Kellum, Acute renal failure: definition, outcome, measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group, Crit Care, 8, (2004), 204–212.
DOI: 10.3410/f.1047455.497408
Google Scholar
[2]
Dissension AR, Acute renal failure: definition and pathogenesis, Kidney int, 66, (1988), 7-10.
Google Scholar
[3]
David P, Melissa D, Anderson B, Timothy A, Pathophysiology of Acute kidney Injury, Compr Physiol, 2, (2012), 1303-1353.
Google Scholar
[4]
Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW, Acute Kidney Injury, mortality, length of stay, and cost in hospitalisation, Journal of the american society of nephrology, 16, (2005), 80-91.
DOI: 10.1681/asn.2004090740
Google Scholar
[5]
Bond JS, Beynon RJ, Reckelhoff JF, David CS, Mep-1 gene controlling a kidney metalloendopeptidas is linked to the major histocompatibility complex in mice, Natural academy of science, 81, (1984), 5542-5545.
DOI: 10.1073/pnas.81.17.5542
Google Scholar
[6]
Craig SS, Reckelhoff JF, Bond JS, Distribution of meprin in kidneys from mice with high and low meprin activity, Am J Cell Physiol, 253, (1987), 535-540.
DOI: 10.1152/ajpcell.1987.253.4.c535
Google Scholar
[7]
Bond, J. S., Rojas, K., Overhauser, J., Zoghbi, H. Y., Jiang, W. The structural genes, MEP1A and MEP1B, for the alpha and beta subunits of the metalloendopeptidase meprin map to human chromosomes 6p and 18q, respectively. Genomics, 25, (1995), 300-303.
DOI: 10.1016/0888-7543(95)80142-9
Google Scholar
[8]
Kaushal GP, Randy S, Christian H, Sudhir V, Meprin A metlloproteinase and its role in acute kidney injury, Am J renal physiol, 304, (2013), 1150-1158.
Google Scholar
[9]
Carmago S, Shaw SV, Walker PD, Meprin, a brush-border enzyme, plays an important role in hypoxic/ischemic acute renal tubular injury in rat, Kidney Int, 61, (2002), 959-966.
DOI: 10.1046/j.1523-1755.2002.00209.x
Google Scholar
[10]
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C, STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, 43, (2015), 47-52.
DOI: 10.1093/nar/gku1003
Google Scholar
[11]
Dawn ZC, Dinesh VP, Corinne JH, Wen W, Geoffrey D, Dennis CY, Peter SM, Charlotte W, Joaquim T, Richard JW, Zhengyu Y, Actinonin a naturally occurring antibacterial agent, is a potent defromylase inhibitor, Biochemistry, 39, (2000) 1256-1262.
Google Scholar
[12]
Bauvois B, Dauzonne D, Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evolution, and therapeutic prospects, Med. Res, 26, (2006), 88-130.
DOI: 10.1002/med.20044
Google Scholar
[13]
Asmaa S, Simon LD, Borhane A, Cell based evidence for aminoprotease N/CD 13 inhibitor actinonin targeting of MT1-MMP-meiated pro MMP 2 activation, Elsevier, 279, (2009), 171-176.
DOI: 10.1016/j.canlet.2009.01.032
Google Scholar
[14]
Aurelien Grosdidier, Vincent Zoete, Olivier Michielin, SwissDock, a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res, 39, (2011), 270-277.
DOI: 10.1093/nar/gkr366
Google Scholar
[15]
Cross, Simon SJ, Improved FlexX docking using FlexS-determined base fragment placement, Journal of chemical information and modeling, 45, (2005), 993-1001.
DOI: 10.1021/ci050026f
Google Scholar
[16]
Torsten Schwede, Jurgen Kopp, Nicolas Guex, Manuel C. Peitsch, SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Res, 31 (13), (2003), 3381-3385.
DOI: 10.1093/nar/gkg520
Google Scholar
[17]
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ, The Phyre2 web portal for protein modeling, prediction and analysis, Nat Protoc, 10 (6), (2015), 845-858.
DOI: 10.1038/nprot.2015.053
Google Scholar
[18]
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE, UCSF Chimera--a visualization system for exploratory research and analysis, J Comput Chem, 25 (13), (2004), 1605-1612.
DOI: 10.1002/jcc.20084
Google Scholar
[19]
Singh T, Biswas D, Jayaram B, AADS-An automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors, Journal of chemical information and modelling, 51 (10), (2011), 2515-2527.
DOI: 10.1021/ci200193z
Google Scholar
[20]
Mark NW, Lawrence AK, and Michael JE, 3DLigandSite: predicting ligand-binding sites using similar structures, Nucleic Acids Res, 38, (2010), 469-473.
DOI: 10.1093/nar/gkq406
Google Scholar
[21]
Volkamer A, Kuhn D, Rippmann F, Rarey M, DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment, Bioinformatics, 28 (15), (2012), 2074-2075.
DOI: 10.1093/bioinformatics/bts310
Google Scholar
[22]
Greg PB, Benjamin E, Turk J, Simon JH, Gail LM, John EB, jacqueline MC, Lewis C, Judith SB, Marked difference between metalloproteases Meprin A and B in substrate and peptide bond specificity, JBC, 276 (16), (2001), 248-255.
Google Scholar
[23]
Stocker W, Bode W, Structural features of a superfamily of zinc- endopeptidases: the metzincins, Curr Opin Struct Biol, 5, (1995) 383-390.
DOI: 10.1016/0959-440x(95)80101-4
Google Scholar
[24]
LALIGN, Pairwise Sequence Alignment, EMBL-EBI, http://www.ebi.ac.uk/Tools/psa/lalign/, March 21, 2016.
Google Scholar
[25]
Arolas JL, Broder C, Jefferson T, Guevara T, Sterchi EE, Bode W, Stocker W, Pauly C, Gomis Ruth F, Structural basis for the sheddase function of human meprin β metalloproteinase at the plasma membrane, Proc Natl Acad Sci USA, 109 (40), (2012), 16131-16136.
DOI: 10.1073/pnas.1211076109
Google Scholar
[26]
Protein Data Bank (PDB), An Information Portal for Biological Macromolecular Structures http://www.rcsb.org/pdb/explore/explore.do?structureId=4GWN March 15, 2016.
Google Scholar