[1]
E. Dominiquez, E. Pitchel, M. Coughlin, Phytoremediation of soil contaminated with used motor oil: I. Enhanced microbial activities from laboratory and growth chamber studies, Env. Eng. Scienc. 21 (2004) 157-168.
DOI: 10.1089/109287504773087336
Google Scholar
[2]
A.J. Joner et al., Priming effects on PAH degradation and ecotoxicity during phytoremediation, Exp. and Env. Pollut. 128 (2004) 429-435.
DOI: 10.1016/j.envpol.2003.09.005
Google Scholar
[3]
P.M. White Jr. et al., Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil, Wat. Air. Soi. Pollut. 169 (2006) 207-220.
DOI: 10.1007/s11270-006-2194-0
Google Scholar
[4]
J. Vangronsveld et al., Phytoremediation of contaminated soils and groundwater: lessons from the field, Env. Sci. Poll. Res. 16 (2009) 765-794.
Google Scholar
[5]
L. Daane et al., Isolation and Characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizophere of soil marsh plants, Appl. Env. Microbiol. 67 (2001) 2683-2691.
DOI: 10.1128/aem.67.6.2683-2691.2001
Google Scholar
[6]
F.I. Achuba, B.O. Peretiemo-Clarke, Effect of spent engine oil on soil catalase and dehydrogenase activities, Int. Agrophys. 22 (2008)1-4.
Google Scholar
[7]
Z.D. Wang et al., Study of 25 year old Nipis oil spill: persistence of oil residues and comparisons between surface and subsurface sediments, Env. Sci. Technol. 32 (2000) 2222-2232.
DOI: 10.1021/es971070h
Google Scholar
[8]
G.O. Anoliefo et al., Eco-taxonomic distribution of plant species around motor mechanic workshops in Asaba and Benin City, Nigeria: Identification of oil tolerant plant species, Afr. J. Biotechnol. 5 (2006) 1757-1762.
Google Scholar
[9]
S. Wei, Q. Zhou, X. Wang, Identification of weed plants excluding the uptake of heavy metals, Env. Inter. 31(2005) 829-834.
DOI: 10.1016/j.envint.2005.05.045
Google Scholar
[10]
V. Odjegba, A. O. Sadiq, Effects of spent engine oil on the growth parameters, chlorophyll and protein levels of Amaranthus hybridus L, The Environ. 22 (2002) 23–28.
Google Scholar
[11]
V. Meinz, Used oil characterization study. Washington state department of ecology, solid and hazardous waste programme, Hazardous waste section Olympia, Washington, 1999.
Google Scholar
[12]
B. Ikhajiagbe, G.O. Anoliefo, Natural attenuation of a 14-month-old spent engine oil polluted soil, J. Soil Sci. Env. Manag. 2 (2011) 184-192.
Google Scholar
[13]
J.C. Fetzer, The chemistry and analysis of large polycyclic aromatic hydrocarbon, Wiley and Son Company, New York, 2000.
Google Scholar
[14]
H.L. Barnett, B.B. Hunter, Illustrated genera of imperfect fungi fourth ed., APS Press, St Paul Minnesota, 1998.
Google Scholar
[15]
R. Thenmozhi et al., Studies on Mycoremediation of used engine oil contaminated soil samples, Adv. Appl. Sci. Res. 4 (2013) 110-118.
Google Scholar
[16]
J.C. Yeoman's, J.M. Bremner, A rapid and precise method for routine determination of organic carbon in soil, Communications in Soil Science and Plant Analysis. 19 (1989) 1467–1476.
DOI: 10.1080/00103628809368027
Google Scholar
[17]
J. Murphy, J.J.P. Riley, A modified single selection method for determination of phosphate in natural water, Anal. Chem. Acta. 27 (1972) 31–36.
Google Scholar
[18]
A.A. Adekunle, O.A. Adebambo, Petroleum hydrocarbon utilization by fungi isolated from Detarium Senegalense (J. F Gmelin) Seeds, J. Amer. Sci. 3 (2007) 25-31.
Google Scholar
[19]
T. Mandri, J. Lin, Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal, Afr. J. Biotechnol. 6 (2007) 23-27.
Google Scholar
[20]
E.E. Quinones-Aquilar et al., Emergence and growth of maize in a crude oil polluted soil, Agroc. 37 (2003) 585-594.
Google Scholar
[21]
M. Bouchez et al., Les hydrocarbures aromatiques polycycliques dans l'environnement. Deuxieme partie: La degradation par voie microbienne, polycyclic aromatic hydrocarbons in the environment Part two: Microbial degradation of oil and gas, Sci. Technol. 51 (1996) 797-828.
DOI: 10.2516/ogst:1996052
Google Scholar
[22]
A. Yateem, M.T. Balba, N. Al-Awadhi, White rot fungi and their role in remediating oil contaminated soil, Env. Inter. 24 (1998) 181-187.
DOI: 10.1016/s0160-4120(97)00134-7
Google Scholar
[23]
A.L. Juhasz, R. Naidu, Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene, Int. J. Biod. Biodegrad. 45 (2000) 57-88.
DOI: 10.1016/s0964-8305(00)00052-4
Google Scholar
[24]
A. Saraswathy, R. Hallberg, Degradation of pyrene by indigenous fungi from a former gasworks site, FEMS Microbiol. Let. 210 (2002) 227-232.
DOI: 10.1111/j.1574-6968.2002.tb11185.x
Google Scholar
[25]
A.A. Adekunle, P.O. Uaboi-Egbenni, T. Ajayi, Biodegradation of petroleum products by Saccharomyces cerevisea, Nig. J. Bot. 17 (2004) 83-94.
Google Scholar
[26]
H.I. Atagana, R.J. Haynes, F.M. Wallis, Fungal bioremediation of creosote-contaminated soil: A laboratory scale bioremediation study using indigenous soil fungi, Water, air, and soil pollution. 172(1-4) (2006) 201-219.
DOI: 10.1007/s11270-005-9074-x
Google Scholar
[27]
A. Husaini et al., Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites, World Journal of Microbiology and Biotechnology. 24(12) (2008) 2789-2797.
DOI: 10.1007/s11274-008-9806-3
Google Scholar
[28]
A.F. Gesinde et al., Bioremediation of some Nigeria and Arabian crude oils by fungal isolates, International Journal of Pure and Applied Sciences. 2(3) (2008) 37-44.
Google Scholar
[29]
O. Obire, E.C. Anyanwu, Impact of various concentrations of crude oil on fungal populations of soil, Int. J. Env. Sci. Technol. 6 (2009) 211-218.
DOI: 10.1007/bf03327624
Google Scholar
[30]
T. Hadibarata, S. Tachibana, Microbial Degradation of n-Eicosane by filamentous fungi. In: Interdisciplinary studies on environmental chemistry: Environmental research in Asia, Eds. Y. Obayashi et al., Terrapub, Tokyo, 2009, pp.323-329.
Google Scholar
[31]
C.H. Romero et al., Benzo[a]pyrene degradation by soil filamentous fungi, Journal of Yeast and Fungal Research. 1(2) (2010) 25-29.
Google Scholar
[32]
M. Vanishree, A.J. Thatheyus, D. Ramya, Biodegradation of petrol using the fungus Penicillium sp., Sci. Inter. 2 (2014) 26-31.
DOI: 10.17311/sciintl.2014.26.31
Google Scholar
[33]
R. Bartha, R.M. Atlas, The Microbiology of Aquatic oil spills, Adv. Appl. Microbiol. 22 (1997) 225-266.
Google Scholar
[34]
H. Singh, Mycoremediation: Fungal Bioremediation, Wiley-Interscience, New York, 2006.
Google Scholar
[35]
D.W. Ryan, E. Leukes, S. Burton, Improving the bioremediation of phenolic wastewaters by Trametes versicolor, Biores. Technol. 98 (2007) 579-587.
DOI: 10.1016/j.biortech.2006.02.001
Google Scholar
[36]
S. Srivastava, I.S. Thakur, Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm, Soil Biology and Biochemistry. 38 (2006) 1904-1911.
DOI: 10.1016/j.soilbio.2005.12.016
Google Scholar
[37]
P. Pereira et al., DNA damage induced by hydroquinone can be prevented by fungal detoxification, Toxicology Reports. 1 (2014) 1096-1105.
DOI: 10.1016/j.toxrep.2014.10.024
Google Scholar
[38]
S. Abdulsalam et al., Bioremediation of soil contaminated with used motor oil in a closed system, Biorem. Biodeg. 3 (2013) 100-172.
Google Scholar