Effect of Environmental and Nutritional Parameters on the Extracellular Lipase Production by Aspergillus niger

Article Preview

Abstract:

Abstract- The present investigation was carried out to evaluate the effect of different growth conditions on lipase production by Aspegillus niger. The extracellular lipase producing fungus was isolated from spent bleaching earths. Optimization of physical and chemical parameters was done for maximum lipase production using this isolate. Growth of the organism and lipase production were measured usig varying pH (4 – 9), incubation temperature (20 – 30 °C), incubation time (8 – 80 hrs.), carbon sources, nitrogen sources, and shaking speed. Enhanced lipase production was observed at 24 °C, pH 7 and after 72hrs of incubation. Olive oil 5 % was observed as the most effective carbon source and Yeast extract 1.0 % as the most effective nitrogen source for lipase production. The optimum shaking value to get maximum lipase activity by Aspergillus niger was 200 rpm.

Info:

[1] T. Boonchaidung, T. Papone, R. Leesing, Effect of Carbon and Nitrogen Sources on Lipase Production by Isolated Lipase-Producing Soil Yeast, Journal of Life Sciences and Technologies. 1 (2013).

DOI: 10.12720/jolst.1.3.176-179

Google Scholar

[2] H. Chahinian et al., Production of extracellular lipases by Penicillium cyclopium purification and characterization of a partial acylglycerol lipase, Bioscience, biotechnology, and biochemistry. 64 (2000) 215-222.

DOI: 10.1271/bbb.64.215

Google Scholar

[3] J. Cordova et al., Lipase production by solid state fermentation of olive cake and sugar cane bagasse, Journal of Molecular Catalysis B: Enzymatic. 5 (1998) 75-78.

DOI: 10.1016/s1381-1177(98)00067-8

Google Scholar

[4] R. Eitenmiller, J. Vakil, K. Shahani, Production and properties of Pencillium roqueforti lipase, Journal of food science. 35 (1970) 130-133.

DOI: 10.1111/j.1365-2621.1970.tb12121.x

Google Scholar

[5] M. Elibol, D. Ozer, Influence of oxygen transfer on lipase production by Rhizopus arrhizus, Process Biochemistry. 36 (2000) 325-329.

DOI: 10.1016/s0032-9592(00)00226-0

Google Scholar

[6] V.R. Murty, J. Bhat, P. Muniswaran, Hydrolysis of oils by using immobilized lipase enzyme: a review, Biotechnology and Bioprocess Engineering. 7 (2002) 57-66.

DOI: 10.1007/bf02935881

Google Scholar

[7] Y. Ren et al., Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating, BMC biotechnology. 11 (2011) 1.

DOI: 10.1186/1472-6750-11-63

Google Scholar

[8] Y. Wang, Y.-L. Hsieh, Immobilization of lipase enzyme in polyvinyl alcohol (PVA) nanofibrous membranes, Journal of Membrane Science. 309 (2008) 73-81.

DOI: 10.1016/j.memsci.2007.10.008

Google Scholar

[9] T. Samukawa et al., Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil, Journal of bioscience and bioengineering. 90 (2000) 180-183.

DOI: 10.1016/s1389-1723(00)80107-3

Google Scholar

[10] A. Macario et al., Increasing stability and productivity of lipase enzyme by encapsulation in a porous organic–inorganic system, Microporous and Mesoporous Materials. 118 (2009) 334-340.

DOI: 10.1016/j.micromeso.2008.09.003

Google Scholar

[11] L. Wallinder et al., Hepatic and extrahepatic uptake of intravenously injected lipoprotein lipase, Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism. 795 (1984) 513-524.

DOI: 10.1016/0005-2760(84)90181-4

Google Scholar

[12] F. Yagiz, D. Kazan, A.N. Akin, Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites, Chemical Engineering Journal. 134 (2007) 262-267.

DOI: 10.1016/j.cej.2007.03.041

Google Scholar

[13] F. Ma, M.A. Hanna, Biodiesel production: a review, Bioresource technology. 70 (1999) 1-15.

Google Scholar

[14] E. Sherwin, Oxidation and antioxidants in fat and oil processing, Journal of the American Oil Chemists' Society. 55 (1978) 809-814.

DOI: 10.1007/bf02682653

Google Scholar

[15] F. Hasan, A.A. Shah, A. Hameed, Industrial applications of microbial lipases, Enzyme and Microbial technology. 39 (2006) 235-251.

DOI: 10.1016/j.enzmictec.2005.10.016

Google Scholar

[16] R. Sharma, Y. Chisti, U.C. Banerjee, Production, purification, characterization, and applications of lipases, Biotechnology advances. 19 (2001) 627-662.

DOI: 10.1016/s0734-9750(01)00086-6

Google Scholar

[17] K. Jaeger, B. Dijkstra, M. Reetz, Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases, Annual Reviews in Microbiology. 53 (1999) 315-351.

DOI: 10.1146/annurev.micro.53.1.315

Google Scholar

[18] A. Houde, A. Kademi, D. Leblanc, Lipases and their industrial applications, Applied biochemistry and biotechnology. 118 (2004) 155-170.

DOI: 10.1385/abab:118:1-3:155

Google Scholar

[19] A. Macrae, R. Hammond, Present and future applications of lipases, Biotechnology and Genetic Engineering Reviews. 3 (1985) 193-218.

DOI: 10.1080/02648725.1985.10647813

Google Scholar

[20] E.M. Anderson, K.M. Larsson, O. Kirk, One biocatalyst–many applications: the use of Candida antarctica B-lipase in organic synthesis, Biocatalysis and Biotransformation. 16 (1998) 181-204.

DOI: 10.3109/10242429809003198

Google Scholar

[21] N.N. Gandhi, Applications of lipase, Journal of the American Oil Chemists' Society. 74 (1997) 621-634.

Google Scholar

[22] K.-E. Jaeger, M.T. Reetz, Microbial lipases form versatile tools for biotechnology, Trends in biotechnology. 16 (1998) 396-403.

DOI: 10.1016/s0167-7799(98)01195-0

Google Scholar

[23] P. Ghosh et al., Microbial lipases: production and applications, Science Progress (1933-), (1996) 119-157.

Google Scholar

[24] M. Kapoor, M.N. Gupta, Lipase promiscuity and its biochemical applications, Process Biochemistry. 47 (2012) 555-569.

DOI: 10.1016/j.procbio.2012.01.011

Google Scholar

[25] R. Aravindan, P. Anbumathi, T. Viruthagiri, Lipase applications in food industry, Indian Journal of Biotechnology. 6 (2007) 141.

Google Scholar

[26] E. Santaniello, P. Ferraboschi, P. Grisenti, Lipase-catalyzed transesterification in organic solvents: applications to the preparation of enantiomerically pure compounds, Enzyme and microbial technology. 15 (1993) 367-382.

DOI: 10.1016/0141-0229(93)90123-j

Google Scholar

[27] P.D. de María et al., Biotechnological applications of Candida antarctica lipase A: state-of-the-art, Journal of molecular catalysis b: enzymatic. 37 (2005) 36-46.

DOI: 10.1016/j.molcatb.2005.09.001

Google Scholar

[28] M.C. Flickinger, Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. 7 Volume Set, 2010.

Google Scholar

[29] K.-E. Jaeger et al., Bacterial lipases for biotechnological applications, Journal of molecular catalysis B: Enzymatic. 3 (1997) 3-12.

Google Scholar

[30] H. Fukuda, A. Kondo, H. Noda, Biodiesel fuel production by transesterification of oils, Journal of bioscience and bioengineering. 92 (2001) 405-416.

DOI: 10.1016/s1389-1723(01)80288-7

Google Scholar

[31] A.K. Gombert et al., Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate, Process Biochemistry. 35 (1999) 85-90.

DOI: 10.1016/s0032-9592(99)00036-9

Google Scholar

[32] D. Pokorny, J. Friedrich, A. Cimerman, Effect of nutritional factors on lipase biosynthesis by Aspergillus niger, Biotechnology letters. 16 (1994) 363-366.

DOI: 10.1007/bf00245052

Google Scholar

[33] K.-E. Jaeger, T. Eggert, Lipases for biotechnology, Current opinion in Biotechnology. 13 (2002) 390-397.

DOI: 10.1016/s0958-1669(02)00341-5

Google Scholar

[34] R. Kader, A. Yousuf, M. Hoq, Optimization of lipase production by a Rhizopus MR12 in shake culture, Journal of Applied Sciences. 7 (2007) 855-860.

DOI: 10.3923/jas.2007.855.860

Google Scholar

[35] N. Kamini, J. Mala, R. Puvanakrishnan, Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake, process Biochemistry. 33 (1998) 505-511.

DOI: 10.1016/s0032-9592(98)00005-3

Google Scholar

[36] S. Labourdenne et al., The oil-drop tensiometer: potential applications for studying the kinetics of (phospho) lipase action, Chemistry and physics of lipids. 71 (1994) 163-173.

DOI: 10.1016/0009-3084(94)90068-x

Google Scholar

[37] E.W. Seitz, Industrial application of microbial lipases: a review, Journal of the American Oil Chemists' Society. 51 (1974) 12-16.

DOI: 10.1007/bf02545206

Google Scholar

[38] M.A. Kashmiri, A. Adnan, B.W. Butt, Production, purification and partial characterization of lipase from Trichoderma viride, African Journal of Biotechnology. 5 (2006).

Google Scholar

[39] S. Kumar et al., Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3, Protein Expression and Purification. 41 (2005) 38-44.

DOI: 10.1016/j.pep.2004.12.010

Google Scholar

[40] M. Stoytcheva et al., Analytical methods for lipases activity determination: A review, Current Analytical Chemistry. 8 (2012) 400-407.

DOI: 10.2174/157341112801264879

Google Scholar

[41] V.M. Lima et al., Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum, Food Technology and Biotechnology. 41 (2003) 105-110.

Google Scholar

[42] L. Toscano et al., Production and partial characterization of extracellular lipase from Trichoderma harzianum by solid-state fermentation, Biotechnology & Biotechnological Equipment. 27 (2013) 3776-3781.

DOI: 10.5504/bbeq.2012.0140

Google Scholar

[43] A.V. Prabhu et al., Rice bran lipase: extraction, activity, and stability, Biotechnology progress. 15 (1999) 1083-1089.

DOI: 10.1021/bp990122z

Google Scholar

[44] A.A. Khaskheli et al., Monitoring the Rhizopus oryzae lipase catalyzed hydrolysis of castor oil by ATR-FTIR spectroscopy, Journal of Molecular Catalysis B: Enzymatic. 113 (2015) 56-61.

DOI: 10.1016/j.molcatb.2015.01.002

Google Scholar

[45] M. Valeria et al., Production of Lipase by Penicillium aurantiogriseum, Food Technol. Biotechnol. 41 (2003) 105-110.

Google Scholar

[46] N. Mahanta, A. Gupta, S. Khare, Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate, Bioresource technology. 99 (2008) 1729-1735.

DOI: 10.1016/j.biortech.2007.03.046

Google Scholar

[47] R. Muralidhar et al., A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources, Biochemical Engineering Journal. 9 (2001) 17-23.

DOI: 10.1016/s1369-703x(01)00117-6

Google Scholar

[48] A. Pandey et al., The realm of microbial lipases in biotechnology, Biotechnology and applied biochemistry. 29 (1999) 119-131.

Google Scholar

[49] M. Prasad, K. Manjunath, Effect of media and process parameters in the enhancement of extracellular lipase production by bacterial isolates from industrial effluents, International Journal of Microbiology Research. 4 (2012) 308.

DOI: 10.9735/0975-5276.4.8.308-311

Google Scholar

[50] S. Ushio et al., Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein, The Journal of Immunology. 156 (1996) 4274-4279.

DOI: 10.4049/jimmunol.156.11.4274

Google Scholar

[51] S.B. Imandi et al., Application of statistical experimental designs for the optimization of medium constituents for the production of citric acid from pineapple waste, Bioresource technology. 99 (2008) 4445-4450.

DOI: 10.1016/j.biortech.2007.08.071

Google Scholar

[52] S.B. Imandi, S.K. Karanam, H.R. Garapati, Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus), Brazilian Journal of Microbiology. 44 (2013) 915-921.

DOI: 10.1590/s1517-83822013005000068

Google Scholar

[53] A. El-Batal, H.A. Karem, Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation, Food Research International. 34 (2001) 715-720.

DOI: 10.1016/s0963-9969(01)00093-x

Google Scholar

[54] S.K. Karanam, N.R. Medicherla, Enhanced lipase production by mutation induced Aspergillus japonicus, African Journal of Biotechnology. 7 (2008) 2064-2067.

DOI: 10.5897/ajb2008.000-5054

Google Scholar

[55] M. Irfan, J. Javed, Q. Syed, UV mutagenesis of Aspergillus niger for enzyme production in submerged fermentation, Pak. J. Biochem. Mol. Biol. 44 (2011) 137-140.

Google Scholar