[1]
A. Sankari, A comparative study on the ecology of spiders (Aranea) in the agricultural crop field, garden and paddy store-house in the Nagapattinam district, Tamil Nadu, South India, Dissertation, Bharathidasan University, India, 2011.
Google Scholar
[2]
B.K. Tikader, Handbook of Indian Spiders, Zoological Survey of India, Calcutta, India, 1987.
Google Scholar
[3]
P.A. Sebastian, K.V. Peter, Spiders of India, Universities Press, Hyderabad, India, 2009.
Google Scholar
[4]
S. Jayakumar, A. Sankari, Spider population and their predatory efficiency in different rice establishment techniques in Aduthurai, Tamil Nadu, Journal of Biopesticides. 3(1) (2010) 20–27.
Google Scholar
[5]
A. Sankari, K. Thiyagesan, Spider (Araneae) density and diversity in relation to crop stages in the paddy fields of Nagapattiam District, Tamil Nadu, India, Scientific Transactions in Environment Technovation. 5(4) (2012) 193–201.
DOI: 10.20894/stet.116.005.004.006
Google Scholar
[6]
S.E. Riechert, T. Lockley, Spiders as biological control agents, Annual Review of Entomology. 29(1) (1984) 299–320.
DOI: 10.1146/annurev.en.29.010184.001503
Google Scholar
[7]
K.D. Sunderland et al., Pest control by a community of natural enemies, Acta Jutlandica. 72 (1997) 271–326.
Google Scholar
[8]
K.D. Sunderland, Mechanisms underlying the effects of spiders on pest populations, J. Arachnol. 27 (1999) 308–316.
Google Scholar
[9]
A.L. Turnbull, Ecology of the true spiders (Araneomorphae), Annual Review of Entomology. 18 (1973) 305–348.
DOI: 10.1146/annurev.en.18.010173.001513
Google Scholar
[10]
D.H. Wise, Spiders in ecological web, Cambridge University Press, Cambridge, 1993.
Google Scholar
[11]
W.S. Bristowe, The Comity of Spiders, Vol. II, Ray Sec. London, 1941.
Google Scholar
[12]
D.H. Wise, J.L. Barata, Prey of two syntopic spiders with different web structures, Journal of Arachnology. 11 (1983) 271–281.
Google Scholar
[13]
T. Watanabe, Effects of web design on the prey capture efficiency of the Uloborid spider Octonoba sybotides under abundant and limited prey conditions, Zool Sci. 18 (2001) 585–590.
DOI: 10.2108/zsj.18.585
Google Scholar
[14]
P. Prokop, D. Gryglakova, Factors affecting the foraging success of the wasp-like spider Argiope bruennichi (Araneae): Role of web design, Biol Bratisl. 60(2) (2005) 165–169.
Google Scholar
[15]
T.A. Blackledge, J.M. Zevenbergen, Condition-dependent spider web architecture in the western black widow, Latrodectus Hesperus, Animal Behav. 73(5) (2007) 855–864.
DOI: 10.1016/j.anbehav.2006.10.014
Google Scholar
[16]
B.D. Opell, J.E. Bond, D.A. Warner, The effect of capture spiral composition and orb-web orientation on prey interception, Zoology. 109(4) (2006) 339–345.
DOI: 10.1016/j.zool.2006.04.002
Google Scholar
[17]
K. Nakata, To be or not to be conspicuous: the effects of prey availability and predator risk on spider's web decoration building, Anim Behav.78(5) (2009) 1255–1260.
DOI: 10.1016/j.anbehav.2009.08.012
Google Scholar
[18]
J.D. Harwood, K.D. Sunderland, W.O.C. Symondson, Web-location by linyphiid spiders: prey-specific aggregation and foraging strategies, Journal of Animal Ecology. 72 (2003) 745–756.
DOI: 10.1046/j.1365-2656.2003.00746.x
Google Scholar
[19]
T.A. Blackledge, M. Kuntner, I. Agnarsson (eds.), The form and function of spider orb webs: evolution from silk to ecosystems, in: Advances in Insect Physiology, Spider Physiology and Behaviour – Behaviour, Academic Press - Elsevier Science Ltd, London. 2011.
DOI: 10.1016/b978-0-12-415919-8.00004-5
Google Scholar
[20]
J.D. Harwood, J.J. Obrycki, Web-site selection strategies of linyphiid spiders in alfalfa: implications for biological control, Biocontrol. 52(4) (2007) 451–467.
DOI: 10.1007/s10526-006-9044-2
Google Scholar
[21]
W.G. Eberhard, Function and phylogeny of spider webs, Annual Review of Ecology and Systematics. 21(1) (1990) 341–372.
DOI: 10.1146/annurev.es.21.110190.002013
Google Scholar
[22]
L. Bishop, S.R. Connolly, Web orientation, thermoregulation, and prey capture efficiency in a tropical forest spider, Journal of Arachnology. 20 (1992) 173–178.
Google Scholar
[23]
A.L. Rypstra, Building a better insect trap - an experimental investigation of prey capture in a variety of spider webs, Oecologia. 52 (1982) 31–36.
DOI: 10.1007/bf00349008
Google Scholar
[24]
T.A. Blackledge, C.M. Eliason, Functionally independent components of prey capture are architecturally constrained in spider orb webs, Biology Letters. 3(5) (2007) 456–458.
DOI: 10.1098/rsbl.2007.0218
Google Scholar
[25]
S. Zschokke et al., Prey-capture strategies in sympatric web-building spiders, Canadian Journal of Zoology-Revue Canadienne De Zoologie. 84 (2006) 964–973.
DOI: 10.1139/z06-074
Google Scholar
[26]
J.D. Harwood, K.D. Sunderland, W.O.C. Symondson, Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat, Journal of Applied Ecology. 38 (2001) 88–99.
DOI: 10.1046/j.1365-2664.2001.00572.x
Google Scholar
[27]
J.N. Pruitt et al., Individual- and condition-dependent effects on habitat choice and choosiness, Behavioral Ecology and Sociobiology. 65 (2011) 1987–1995.
DOI: 10.1007/s00265-011-1208-0
Google Scholar
[28]
M. Nyffeler, K.D. Sunderland, Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies, Agric Ecosyst Environ. 95 (2003) 579–612.
DOI: 10.1016/s0167-8809(02)00181-0
Google Scholar
[29]
J.D. Harwood, K.D. Sunderland, W.O.C. Symondson, Prey selection by linyphiid spiders: molecular tracking of the effects of alternative prey on rates of aphid consumption in the field, Molecular Ecology.13 (2004) 3549–3560.
DOI: 10.1111/j.1365-294x.2004.02331.x
Google Scholar
[30]
E.G. Chapman et al., Molecular evidence for dietary selectivity and pest suppression potential in an epigeal spider community in winter wheat, Biological Control. 65(1) (2013) 72–76.
DOI: 10.1016/j.biocontrol.2012.08.005
Google Scholar
[31]
T.A. Blackledge, J.W. Wenzel, State-determinate foraging decisions and web architecture in the spider Dictyna volucripes (Araneae Dictynidae), Ethology Ecology and Evolution. 13 (2001) 105–113.
DOI: 10.1080/08927014.2001.9522778
Google Scholar
[32]
L. Sigsgaard, Early season natural control of the brown planthopper, Nilaparvata lugens: the contribution and interaction of two spider species and a predatory bug, Bulletin of Entomological Research. 97 (2007) 533–544.
DOI: 10.1017/s0007485307005196
Google Scholar
[33]
A.L. Rypstra et al., Architectural features of agricultural habitats and their impact on the spider inhabitants, Journal of Arachnology. 27 (1999) 371–377.
Google Scholar
[34]
S.E. Riechert, L. Bishop. Prey control by an assemblage of generalist predators: spiders in garden test system, Ecology. 71(4) (1990) 1441–1450.
DOI: 10.2307/1938281
Google Scholar
[35]
A.T. Barrion, J.A. Litsinger, Riceland spiders of south and southeast Asia, CAB International in association with the International Rice Research Institute, Philippines, 1995.
DOI: 10.1017/s0007485300027401
Google Scholar
[36]
N. Ramalingam, Little encyclopedia of practical Entomology, Super Nova publication, 2003.
Google Scholar