Differences in Nutritional Value and Amino Acid Composition of Moina macrocopa (Straus) Using Yeast Saccharomyces cerevisiae and Rhodotorula glutinis as Fodder Substrates

Article Preview

Abstract:

The nutritional composition and amino acid profile of Moina macrocopa were studied using different types of yeast (Saccharomyces cerevisiae and Rhodotorula glutinis) as fodder substrates. The effective accumulation of carotenoids in Moina macrocopa during R. glutinis yeast application was not accompanied by deterioration in the nutritional value of zooplankton. The content of total proteins and total lipids in Moina grown on S. cerevisiae and R. glutinis was not significantly different. However, the use of R. glutinis in the cultivation of M. macrocopa led to the change in the ratio of proteinogenic amino acids in the studied cladocerans. In particular, the share of methionine, leucine and isoleucine significantly increased. It allowed to enhance the quality of protein in the fodder zooplankton, that is especially important in the feeding of fish fry.

Info:

* - Corresponding Author

[1] I.N. Ostroumova, Biological bases of fish feeding, 2-nd ed., GosNIORKH (State Research Institute of River and Lake Industry), St. Petersburg, Russia, 2012. (in Russian).

Google Scholar

[2] B. Bjerkeng, Carotenoid pigmentation of salmonid fishes – recent progress, in: L.E. Cruz Suárez et al., Avances en Nutrición Acuícola V. 2000. Memorias del Quinto Simposio Internacional de Nutrición y Tecnología de Alimentos. 19-22 Noviembre, 2000. Mérida Yucatán, México. ISBN 970-694-52-9. Universidad Autónoma de Nuevo León. Monterrey, N.L. México, p.71–89.

DOI: 10.17126/joralres.2016.053

Google Scholar

[3] C.K. Kang et al., Use of marine yeasts as an available diet for mass cultures of Moina macrocopa, Aquaculture Research. 37(12) (2006) 1227-1237.

DOI: 10.1111/j.1365-2109.2006.01553.x

Google Scholar

[4] V.D. Romanenko et al., The biotechnology of hydrobionts cultivation, Institute of Hydrobiology of NAS of Ukraine, Kyiv, Ukraine, 1999. (in Russian).

Google Scholar

[5] B. Kluttgen et al. ADaM, an artificial freshwater for the culture of zooplankton, Water Res. 28(3) (1994) 743-746.

Google Scholar

[6] O. Kushniryk et al., Cultivating Moina macrocopa Straus in different media using carotenogenic yeast Rhodotorula, Arch. Pol. Fish. 23(1) (2015) 37–42.

DOI: 10.1515/aopf-2015-0004

Google Scholar

[7] J. Folch, M. Lees, G.H.S. Stanley, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226(1) (1957) 497–509.

DOI: 10.1016/s0021-9258(18)64849-5

Google Scholar

[8] J.A. Knight, S. Anderson, J.M. Rawle, Chemical basis of the sulfo-phospho-vanillin. Reaction for estimating total serum lipid, Clinical Chemistry. 18(3) (1972) 199–202.

DOI: 10.1093/clinchem/18.3.199

Google Scholar

[9] O.H. Lowry et al., Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193(1) (1951) 265–275.

Google Scholar

[10] T.D. Kozarenko, Ion-exchange chromatography of amino acids, Science, Novosibirsk, USSR, 1975. (in Russian).

Google Scholar

[11] GOST R 54058-2010 (2011). Functional food products. Method for determination of carotenoids. Moscow, Russia: Standartinform. (In Russian).

Google Scholar

[12] O.V. Checheta, E.V. Safonova, A.I. Slivkin, Method for determination of carotenoids by chromatography in a thin layer of sorbent, Sorbtsionnye i Khromatograficheskie Protsessy. 8(2) (2008) 320–326. (in Russian).

Google Scholar

[13] M. Lotocka, E. Styczynska-Jurewicz, L. Bledzki, Changes in carotenoid composition in different developmental stages of copepods: Pseudocalanus acuspes Giesbrecht and Acartia spp., J. Plankt. Res. 26(2) (2004) 159–166.

DOI: 10.1093/plankt/fbh021

Google Scholar

[14] Y. Tanaka, Comparative biochemical studies on carotenoids in aquatic animals, Mem. Fac. Fish. 27(2) (1978) 355–422.

Google Scholar

[15] L. Postel, H. Fock, W. Hagen, Biomass and abundance, in: ICES Zooplankton Methodology Manual, Academic Press, London, UK, 2000, ch. 4, p.83–192.

DOI: 10.1016/b978-012327645-2/50005-0

Google Scholar

[16] А.А. Khalafyan, STATISTICA 6. Statistical analysis of data, 3-rd ed., OOO Binom-Press Publ., Moscow, Russia, 2008. (in Russian).

Google Scholar

[17] R. Bouchnak, C.E.W. Steinberg, Algal diets and natural xenobiotics impact energy allocation in cladocerans. II. Moina macrocopa and Moina micrura, Limnol.-Ecol. Manag. Inl. Waters. 44 (2014) 23–31.

DOI: 10.1016/j.limno.2013.06.002

Google Scholar

[18] O.V. Kushniryk et al., The application of yeast Rhodotorula glutinis for cultivation of Simocephalus vetulus (Müller, 1776) under the laboratory conditions, Scientific Herald of Chernivtsy University. Biology (Biological Systems). 6(1) (2014) 24–29. (in Ukrainian).

Google Scholar

[19] D.P. Bureau, P.M. Encarnação, Adequately defining the amino acid requirements of fish: The Case example of lysine, in: L.E. Cruz Suárez et al., Avances en nutrición acuícola VIII. Memorias del VIII Simposio Internacional de Nutrición Acuícola. 15 al 17 de Noviembre de 2006. Mazatlán, Sinaloa, México. ISBN 970-694-331-5. Universidad Autónoma de Nuevo León. Monterrey, N.L., México, 2006, p.29–54.

DOI: 10.17126/joralres.2016.053

Google Scholar

[20] W.M. Furuya, V.R.B. Furuya, Nutritional innovations on amino acids supplementation in Nile tilapia diets, Rev Bras Zootec. 39(suppl spe) (2010) 88–94.

DOI: 10.1590/s1516-35982010001300010

Google Scholar

[21] M. Yaghoubi et al., Effects of dietary essential amino acid deficiencies on the growth performance and humoral immune response in silvery-black porgy (Sparidentex hasta) juveniles, Aquaculture Research. 48(10) (2017) 5311–5323.

DOI: 10.1111/are.13344

Google Scholar

[22] B. Mohanty et al., Amino acid compositions of 27 food fishes and their importance in clinical nutrition, Journal of Amino Acids. 2014 (2014) 1–7.

Google Scholar

[23] G. Wu, Amino acids: Metabolism, functions, and nutrition, Amino Acids. 37(1) (2009) 1–17.

DOI: 10.1007/s00726-009-0269-0

Google Scholar

[24] S. Zehra, M. A. Khan, Dietary phenylalanine requirement and tyrosine replacement value for phenylalanine for fingerling Catla catla (Hamilton), Aquaculture. 433 (2014) 256–265.

DOI: 10.1016/j.aquaculture.2014.06.023

Google Scholar

[25] H.-M. Habte-Tsion et al., Dietary threonine requirement of juvenile blunt snout bream (Megalobrama amblycephala), Aquaculture. 437 (2015) 304–311.

DOI: 10.1016/j.aquaculture.2014.12.018

Google Scholar

[26] B. Mukhtar et al., Lysine supplementation in fish feed, International Journal of Applied Biology and Forensics. 1(2) (2017) 26–31.

Google Scholar

[27] R.P. Wilson, J.E. Halver, Protein and amino acid requirements of fishes, Annual Review of Nutrition. 6 (1986) 225–244.

DOI: 10.1146/annurev.nu.06.070186.001301

Google Scholar

[28] M.J. Walton, C.B. Cowey, J.W. Adron, Methionine metabolism in rainbow trout fed diets of differing methionine and cystine content, The Journal of Nutrition. 112(8) (1982) 1525–1535.

DOI: 10.1093/jn/112.8.1525

Google Scholar

[29] M.R. Ghomi, A. Alizadehnajd, Dietary lysine and methionine requirement of bream Abramis brama orientalis juvenile, Braz. J. Aquat. Sci. Technol. 16(1) (2012) 79–82.

DOI: 10.14210/bjast.v16n1.p79-82

Google Scholar

[30] R.F. Grimble, The effects of sulfur amino acid intake on immune function in humans, The Journal of Nutrition. 136(6 Supplement) (2006) 1660S–1665S.

DOI: 10.1093/jn/136.6.1660s

Google Scholar

[31] O.V. Kushniryk, О.І. Khudyi, The amino acid composition of Simocephalus vetulus (Muller) under conditions of using the different types of yeast as a food substrates, Scientific Notes of Ternopil National Pedagogical University named after Volodymyr Hnatiuk. Series: Biology. 3–4(64) (2015) 388–391. (in Ukrainian).

DOI: 10.36550/2415-7988-2021-1-198-164-167

Google Scholar

[32] A.K. Siwicki et al., Influence of feeding the leucine metabolite β-hydroxy β-methyl butyrate (HMB) on the non-specific cellular and humoral defence mechanisms of rainbow trout (Oncorhynchus mykiss), J. Appl. Ichthyol. 19(1) (2003) 44–48.

DOI: 10.1046/j.1439-0426.2003.00348.x

Google Scholar

[33] L. Wang et al., Interactive effects of dietary leucine and isoleucine on growth, blood parameters, and amino acid profile of Japanese flounder Paralichthys olivaceus, Fish Physiology and Biochemistry. 43(5) (2017) 1265–1278.

DOI: 10.1007/s10695-017-0370-3

Google Scholar

[34] P.C. Calder, Branched-chain amino acids and immunity, The Journal of Nutrition. 136(1) (2006) 288S–293S.

DOI: 10.1093/jn/136.1.288s

Google Scholar

[35] Y.-J. Gao et al., Effects of graded levels of histidine on growth performance, digested enzymes activities, erythrocyte osmotic fragility and hypoxia-tolerance of juvenile grass carp Ctenopharyngodon idella, Aquaculture. 452 (2016) 388–394.

DOI: 10.1016/j.aquaculture.2015.11.019

Google Scholar

[36] I. Ahmed, Effects of dietary amino acid lysine on survival, growth and haemato-biochemical parameters in Indian catfish, Heteropneustes fossilis (Bloch, 1974), fingerlings, Journal of Applied Ichthyology. 33(5) (2017) 1027–1033.

DOI: 10.1111/jai.13355

Google Scholar

[37] L. Feng et al., Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression, Fish & Shellfish Immunology. 45(2) (2015) 239–249.

DOI: 10.1016/j.fsi.2015.04.023

Google Scholar

[38] P. Li et al., New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds, Amino Acids. 37(1) (2009) 43–53.

DOI: 10.1007/s00726-008-0171-1

Google Scholar

[39] N.N. Smirnov, Physiology of the Cladocera, 2nd ed., Academic Press, 2017.

Google Scholar

[40] J.A. Buentello, D.M. Gatlin, The dietary arginine requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid, Aquaculture. 188(3-4) (2000) 311–321.

DOI: 10.1016/s0044-8486(00)00344-6

Google Scholar