[1]
D. Cooney, R. Handschumacher, L-asparaginase and L-asparagine metabolism, Annu. Rev. Pharmacol. 10(1) (1970) 421-440.
DOI: 10.1146/annurev.pa.10.040170.002225
Google Scholar
[2]
M. Jokanovic, Biotransformation of organophosphorus compounds, Toxicology. 166(3) (2001) 139-160.
Google Scholar
[3]
J.M. Kuo, M.Y. Chae, F.M. Raushel, Perturbations to the active site of phosphotriesterase, Biochemistry. 36(8) (1997) 1982-1988.
DOI: 10.1021/bi962099l
Google Scholar
[4]
Z. Rezaeeyan et al., High carotenoid production by a halotolerant bacterium, Kocuria sp. strain QWT-12 and anticancer activity of its carotenoid, EXCLI J. 16 (2017) 840-851.
Google Scholar
[5]
M. Cycon, M. Wojcik, Z. Piotrowska-Seget, Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil, Chemosphere. 76(4) (2009) 494-501.
DOI: 10.1016/j.chemosphere.2009.03.023
Google Scholar
[6]
H. Yazdi et al., The Effects of some Physicochemical Stresses on Escherichia coli O157: H7 as Clinical Pathogenic Bacteria, Int. J. Agric. Biol. 18(6) (2016) 1237‒1241.
DOI: 10.17957/ijab/15.0237
Google Scholar
[7]
H. Tebyanian et al., Effect of Physical and Chemical Factors in Production of Alkaline Protease Enzyme by Bacillus Strains, ILNS. 71 (2018) 10-16.
DOI: 10.56431/p-1hb5hz
Google Scholar
[8]
N.A. Burgess-Brown et al., Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study, Protein Expression and Purification. 59(1) (2008) 94-102.
DOI: 10.1016/j.pep.2008.01.008
Google Scholar
[9]
C.M. Theriot, A.M. Grunden, Hydrolysis of organophosphorus compounds by microbial enzymes, Appl. Microbiol Biotechnol. 89(1) (2011) 35-43.
DOI: 10.1007/s00253-010-2807-9
Google Scholar
[10]
T. Wille et al., Detoxification of G- and V-series nerve agents by the phosphotriesterase OpdA, Biocatalysis and Biotransformation. 30 (2012) 203-208.
DOI: 10.3109/10242422.2012.661724
Google Scholar
[11]
T.C. Cheng, S.P. Harvey, A.N. Stroup, Purification and Properties of a Highly Active Organophosphorus Acid Anhydrolase from Alteromonas undina, Appl. Environ. Microbiol. 59(9) (1993) 3138-3140.
DOI: 10.1128/aem.59.9.3138-3140.1993
Google Scholar
[12]
T.C. Cheng et al., G-type nerve agent decontamination by Alteromonas prolidase, Ann N Y Acad Sci. 864 (1998) 253-258.
DOI: 10.1111/j.1749-6632.1998.tb10316.x
Google Scholar
[13]
A.L. Simonian et al., Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates, Anal Chim Acta. 442(1) (2001) 15-23.
DOI: 10.1016/s0003-2670(01)01131-x
Google Scholar
[14]
C.S. McDaniel, L.L. Harper, J.R. Wild, Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase, J. Bacteriol. 170(5) (1988) 2306-2311.
DOI: 10.1128/jb.170.5.2306-2311.1988
Google Scholar
[15]
M. Shimazu et al., Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor, Biotechnol. Prog. 19(5) (2003) 1612-1614.
DOI: 10.1021/bp0340640
Google Scholar
[16]
C. Huang et al., Spatiotemporal analyses of osteogenesis and angiogenesis via intravital imaging in cranial bone defect repair, J. Bone Mine.\r. Res. 30(7) (2015) 1217-1230.
DOI: 10.1002/jbmr.2460
Google Scholar
[17]
Z. Liu et al., Simultaneous degradation of organophosphates and 4-substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase, J. Agric Food Chem. 57(14) (2009) 6171-6177.
DOI: 10.1021/jf804008j
Google Scholar
[18]
C. Yang et al., Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates, Biotechnol. Bioeng. 99(1) (2008) 30-37.
DOI: 10.1002/bit.21535
Google Scholar
[19]
C. Li et al., Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway, Biotechnol. Bioeng. 99(2) (2008) 485-490.
DOI: 10.1002/bit.21548
Google Scholar
[20]
H. Shi, W. Wen Su, Display of green fluorescent protein on Escherichia coli cell surface, Enzyme Microb. Technol. 28(1) (2001) 25-34.
DOI: 10.1016/s0141-0229(00)00281-7
Google Scholar
[21]
Z. Yang et al., Novel bacterial surface display systems based on outer membrane anchoring elements from the marine bacterium Vibrio anguillarum, Appl. Environ. Microbiol. 74(14) (2008) 4359-4365.
DOI: 10.1128/aem.02499-07
Google Scholar
[22]
M. Saadi, A. Karkhah, H.R. Nouri, Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 51 (2017) 227-234.
DOI: 10.1016/j.meegid.2017.04.009
Google Scholar
[23]
F. Shakeri et al., Introduction of fungal necrosis inducing phytotoxin for biocontrol of Sinapis arvensis as a common weed in Iran, J. Anim. Plant Sci. 27(5) (2017) 1702-1710.
Google Scholar
[24]
M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research. 31(13) (2003) 3406-3415.
DOI: 10.1093/nar/gkg595
Google Scholar
[25]
C. Yang et al., Cotranslocation of methyl parathion hydrolase to the periplasm and of organophosphorus hydrolase to the cell surface of Escherichia coli by the Tat pathway and ice nucleation protein display system, Appl. Environ. Microbiol. 76(2) (2010) 434-440.
DOI: 10.1128/aem.02162-09
Google Scholar
[26]
S.Y. Lee, J.H. Choi, Z. Xu, Microbial cell-surface display, Trends Biotechnol. 21(1) (2003) 45-52.
Google Scholar
[27]
A. Kondo et al., Applications of yeast cell-surface display in bio-refinery, Recent Pat Biotechnol. 4(3) (2010) 226-234.
Google Scholar
[28]
M. Desvaux et al., Protein cell surface display in Gram-positive bacteria: from single protein to macromolecular protein structure, FEMS Microbiol. Lett. 256(1) (2006) 1-15.
DOI: 10.1111/j.1574-6968.2006.00122.x
Google Scholar
[29]
Q. Zhang et al., [Construction of cell surface display system in lactic acid bacteria by using ice nucleation protein], Wei Sheng Wu Xue Bao. 53(4) (2013) 397-402.
Google Scholar
[30]
S. Khodi, A.M. Latifi, Comparison of the organophosphorus hydrolase surface display by using InaVN and Lpp-OmpA systems in Escherichia coli, J. Microbiol. Biotechnol. (2013).
DOI: 10.4014/jmb.1309.09066
Google Scholar
[31]
Q. Li et al., Molecular characterization of an ice nucleation protein variant (inaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli, Int. J. Biol. Sci. 8(8) (2012) 1097.
DOI: 10.7150/ijbs.4524
Google Scholar
[32]
N.M. Alto et al., Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring, PNAS. 100(8) (2003) 4445-4450.
DOI: 10.1073/pnas.0330734100
Google Scholar
[33]
H. Luo et al., In silico identification of potential inhibitors targeting Streptococcus mutans sortase A, Int. J. Oral. Sci. 9(1) (2017) 53.
Google Scholar
[34]
E.E. Murray et al., Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts, Plant Mol. Biol. 16(6) (1991) 1035-1050.
DOI: 10.1007/bf00016075
Google Scholar
[35]
P. Jarvis, F. Belzile, C. Dean, Inefficient and incorrect processing of the Ac transposase transcript in iae1 and wild-type Arabidopsis thaliana, Plant J. 11(5) (1997) 921-931.
DOI: 10.1046/j.1365-313x.1997.11050921.x
Google Scholar
[36]
J. Haseloff et al., Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly, Proc. Natl. Acad. Sci. U S A. 94(6) (1997) 2122-2127.
DOI: 10.1073/pnas.94.6.2122
Google Scholar
[37]
A. Karkhah, M. Saadi, H.R. Nouri, In silico analyses of heat shock protein 60 and calreticulin to designing a novel vaccine shifting immune response toward T helper 2 in atherosclerosis, Computational Biology and Chemistry. 67 (2017) 244-254.
DOI: 10.1016/j.compbiolchem.2017.01.011
Google Scholar