[1]
C.R. Tilbury, Two new chameleons (Sauria: Chamaeleonidae) from isolated Afromontane forests in Sudan and Ethiopia, Bonner Zoologische Beiträge. 47 (1998) 293-299.
Google Scholar
[2]
F.V. Breitenbach, The indigenous trees of Ethiopia. 2nd ed., Ethiopian Forestry Association, Addis Ababa, Ethiopia, 1963.
Google Scholar
[3]
D, Teketay, Seed and regeneration ecology in dry Afromontane forests of Ethiopia: I. Seed production - population structures, Tropical Ecology. 46(1) (2005) 29-44.
Google Scholar
[4]
I. Friies, Forests and Forest Trees of Northeast Tropical Africa. Kew Bulletin, London, UK, 1992.
Google Scholar
[5]
T.C. Whitmore, Canopy gaps and the two major groups of forest trees. Ecology 70 (1989) 536-538.
DOI: 10.2307/1940195
Google Scholar
[6]
D.U. Hooper, et al., Effects of biodiversity on ecosystem functioning: a consensus of current knowledge, Ecological. Monograph. 75 (2005) 3–35.
Google Scholar
[7]
N. Legesse, Indigenous trees of Ethiopia: Biology, Uses and Propagation Techniques, AAU, Addis Ababa, Ethiopia, 1995.
Google Scholar
[8]
B. Taye, G. Haase, S. Teshome, Forest genetic resources of Ethiopia: Status and proposed actions, in: S. Edwards et al., (Eds.), Forest Genetic Resources Conservation: Principles, Strategies and Actions, The National forest genetic resources conservation strategy development workshop, IBCR and GTZ; Addis Ababa, Ethiopia, 1999, p.39–47.
DOI: 10.1017/cbo9780511551543.006
Google Scholar
[9]
D. Binkley, The influence of tree species on forest soils: processes and patterns, in: D.J. Mead, I.S. Cornforth (Eds.), Proceedings of the Trees and Soil Workshop, Lincoln University Press, Canterbury, New Zealand, 1994, p.1–33.
Google Scholar
[10]
J. Bauhus, D. Paré, L. Côté, Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest, Soil Biology &. Biochemical. 30 (1998) 1077 – 1089.
DOI: 10.1016/s0038-0717(97)00213-7
Google Scholar
[11]
E. Hackl, Composition of the microbial communities in the mineral soil under different types of natural forest, Soil Biology & Biochemistry. 37 (2005) 661 – 671.
DOI: 10.1016/j.soilbio.2004.08.023
Google Scholar
[12]
X. Fang, et al., The effects of forest type on soil microbial activity in Changbai Mountain, Northeast China, Annals of Forest Science. 73 (2016) 473-482.
DOI: 10.1007/s13595-016-0540-y
Google Scholar
[13]
E. Ayres, et al., Tree species traits influence soil physical, chemical, and biological properties in high elevation forests, PLoS ONE. 4 (2009) e5964.
DOI: 10.1371/journal.pone.0005964
Google Scholar
[14]
S. Hättenschwiler, Effects of Tree Species Diversity on Litter Quality and Decomposition, in: M. Scherer-Lorenzen, C. Körner, E.D. Schulze (Eds.), Forest Diversity and Function. Ecological Studies (Analysis and Synthesis), Springer, Berlin, Germany, 2005, pp.149-164.
DOI: 10.1007/3-540-26599-6_8
Google Scholar
[15]
F. Bernhard-Reversat, Changes in relationships between initial litter quality and CO2 release during early laboratory decomposition of tropical leaf litters, European Journal of Soil & Biology. 34 (1998) 117-122.
DOI: 10.1016/s1164-5563(00)88648-3
Google Scholar
[16]
S.J. Grayston, D. Vaughan, D. Jones, Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability, Applied Soil Ecology. 5 (1996) 29-56.
DOI: 10.1016/s0929-1393(96)00126-6
Google Scholar
[17]
F. Fritzsche et al., Soil–plant hydrology of indigenous and exotic trees in an Ethiopian montane forest, Tree Physiology. 26 (2006) 1043–1054.
DOI: 10.1093/treephys/26.8.1043
Google Scholar
[18]
R.P. Phillips, T.J. Fahey, Tree Species and Mycorrhizal Associations Influence the Magnitude of Rhizosphere Effects, Ecology. 87(5) (2006) 1302–1313.
DOI: 10.1890/0012-9658(2006)87[1302:tsamai]2.0.co;2
Google Scholar
[19]
P.S. Kourtev, J.G. Ehrenfeld, M. Haggblom, Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities, Soil Biology & Biochemistry. 35 (2003) 895-905.
DOI: 10.1016/s0038-0717(03)00120-2
Google Scholar
[20]
Y. Ashagrie, et al., Changes in soil organic carbon, nitrogen and sulfur stocks due to the conversion of natural forest into tree plantations (Pinus patula and Eucalyptus globulus) in the highlands of Ethiopia, World Resource Review. 15 (2003) 462-482.
Google Scholar
[21]
Y. Ashagrie, W. Zech, G. Guggenberger, Transformation of a Podocarpus falcatus dominated natural forest into a monoculture Eucalyptus globulus plantation at Munessa, Ethiopia: Soil organic C, N and S dynamics in primary particle and aggregate-size fractions, Agriculture, Ecosystem & Environment. 106 (2005) 89-98.
DOI: 10.1016/j.agee.2004.07.015
Google Scholar
[22]
G. Tesfaye, et al., Regeneration of seven indigenous tree species in a dry Afromontane forest southern Ethiopia, Flora. 205 (2010) 135-143.
DOI: 10.1016/j.flora.2008.12.006
Google Scholar
[23]
G.W. Gee, J.W. Bauder, Particle-size analysis, in: A. Klute (Ed.), Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. 1986, p.383–411.
DOI: 10.2136/sssabookser5.1.2ed.c15
Google Scholar
[24]
G.P. Gillman, E.A. Sumpter, Modification to the compulsive exchange method for measuring exchange characteristics of soils, Australian Journal of Soil Research. 24 (1986) 61-66.
DOI: 10.1071/sr9860061
Google Scholar
[25]
E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification, Canadian Journal of Biochemistry & Physiology. 37 (1959) 911-917.
DOI: 10.1139/o59-099
Google Scholar
[26]
L. Zelles Fatty acid patterns of phospholipids and lipopolysaccharides in characterization of microbial communities in soil: a review, Biology & Fertility of Soils. 29 (1999) 111-129.
DOI: 10.1007/s003740050533
Google Scholar
[27]
L. Zelles, Phospholipid fatty acid profiles in selected members of soil microbial communities, Chemosphere. 35 (1997) 275-294.
DOI: 10.1016/s0045-6535(97)00155-0
Google Scholar
[28]
P.A. Olsson, A. Johansen, Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages, Mycological Research. 104 (2000) 429–434.
DOI: 10.1017/s0953756299001410
Google Scholar
[29]
F. Fritzsche, W. Zech, G. Guggenberger, Soils of the Main Ethiopian Rift Valley escarpment: A transect study, Catena. 70 (2007) 209–219.
DOI: 10.1016/j.catena.2006.09.005
Google Scholar
[30]
FAO, ISRIC, ISSS, World Reference Base for Soil Resources, World Soil Resources Report, #84. FAO, Rome, Italy, 1998.
Google Scholar
[31]
A. Abate, Biomass and nutrient studies of selected tree species of natural and plantation forests: Implications for a sustainable management of the Munessa-Shashemene Forest, Ethiopia, Ph.D. dissertation, Universität Bayreuth, Germany, 2004.
Google Scholar
[32]
Z. Koukoura, A.P. Mamolos, K.L. Kalburtji, Decomposition of dominant plant species litter in a semi-arid grassland, Applied Soil Ecology. 23 (2003) 13-23.
DOI: 10.1016/s0929-1393(03)00006-4
Google Scholar
[33]
M.V. Lutzow et al., Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review, European Journal of Soil Science. 57 (2006) 426-445.
DOI: 10.1111/j.1365-2389.2006.00809.x
Google Scholar
[34]
M. Abraham, Leaf Litter Decomposition and Nutrient Release from Cordia africana Lam. and Croton macrostachyus Del. Tree Species, Journal of Environment and Earth Science. 4(1) (2014) 1-7.
Google Scholar
[35]
B. Berg, C. McClaugherty, Decomposition as a Process: Some Main Feature, in: Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 2nd ed.: Springe, Berlin, Germany 2008, ch. 2, pp.11-31.
DOI: 10.1007/978-3-642-38821-7_2
Google Scholar
[36]
R.M.A. Block, K.C.J. Van Rees, J.D. Knight, A review of fine root dynamics in Populus lantations, Agroforestry Systems. 76 (2006) 73–84.
DOI: 10.1007/s10457-005-2002-7
Google Scholar
[37]
E. Hackl, et al., Microbial nitrogen turnover in soils under different types of natural forest, Forest Ecology & Management. 188 (2004) 101-112.
DOI: 10.1016/j.foreco.2003.07.014
Google Scholar
[38]
W.T. Feng, X.M. Zo., D. Schaefer, Above- and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China, Soil Biology & Biochemistry. 41 (2009) 978-983.
DOI: 10.1016/j.soilbio.2008.10.002
Google Scholar
[39]
H. Jin, O.J. Sun, J. Liu, Changes in soil microbial biomass and community structure with addition of contrasting types of plant litter in a semiarid grassland ecosystem, Journal of Plant Ecology. 3 (2010) 209-217.
DOI: 10.1093/jpe/rtq001
Google Scholar
[40]
T. Wubet et al., Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia, Forest Ecology and Management. 179 (2003) 387-399.
DOI: 10.1016/s0378-1127(02)00546-7
Google Scholar
[41]
M.C. Fisk, T.J. Fahey, Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests, Biogeochemistry. 53 (2001) 201-223.
Google Scholar
[42]
A.E. Strand, Irreconcilable Differences: Fine-Root Life Spans and Soil Carbon Persistence, Science. 319 (2008) 456-458.
DOI: 10.1126/science.1151382
Google Scholar
[43]
Y. Feng, et al., Soil microbial communities under conventional-till and no-till continuous cotton systems, Soil Biology & Biochemistry. 35 (2003) 1693-1703.
DOI: 10.1016/j.soilbio.2003.08.016
Google Scholar
[44]
P. Chan-Woo, et al., Differences in soil aggregate, microbial biomass carbon concentration, and soil carbon between Pinus rigida and Larix kaempferi plantations in Yangpyeong, central Korea, Forest Science and Technology. 8(1) (2012) 38-46.
DOI: 10.1080/21580103.2012.658217
Google Scholar