Phenolic Compounds and Antioxidant Activity of Nepeta nuda subsp. Albiflora

Article Preview

Abstract:

Phenolic content and antioxidant activity of Nepeta nuda subsp. albiflora Boiss. were reported in this study. The ethanol and water extracts of Nepeta nuda subsp. albiflora were prepared and used for biochemical analyses. Antioxidant capacities of the extracts were evaluated by three different in vitro bioanalytical methods including a reducing antioxidant method and two radical scavenging antioxidant methods. The water and ethanol extracts of the plant sample were found to have effective antioxidant potentials. Phenolic content of Nepeta nuda subsp. albiflora was determined by high performance liquid chromatography (HPLC). Rosmarinic acid (182.0±4.5 µg/g), apigenin (84.5±57.6 µg/g), and quercetin (44.5±62.9 µg/g) were identified as major compounds in the ethanol extract of the plant sample. This study has a potential scientific base for further studies about Nepeta nuda subsp. albiflora related to plant biochemistry and plant based pharmacological industry.

Info:

Pages:

1-8

Citation:

Online since:

July 2020

Export:

Share:

Citation:

* - Corresponding Author

[1] A. Aras, M. Dogru, E. Bursal, Determination of antioxidant potential of Nepeta nuda subsp. lydiae, Analytical Chemistry Letters 6 (2016) 758-765.

DOI: 10.1080/22297928.2016.1265467

Google Scholar

[2] M. Silinsin, E. Bursal, UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf, Natural Product Research 32 (2018) 1467-1471.

DOI: 10.1080/14786419.2017.1350673

Google Scholar

[3] Z. Zou, W. Xi, Y. Hu, C. Nie, Z. Zhou, Antioxidant activity of Citrus fruits, Food Chemistry 196 (2016) 885-896.

DOI: 10.1016/j.foodchem.2015.09.072

Google Scholar

[4] E. Bursal, A. Aras, Ö. Kılıç, Evaluation of antioxidant capacity of endemic plant Marrubium astracanicum subsp. macrodon: Identification of its phenolic contents by using HPLC-MS/MS, Natural Product Research 33 (2019) 1975-1979.

DOI: 10.1080/14786419.2018.1480018

Google Scholar

[5] A. Aras, M. Silinsin, M.N. Bingol, E. Bursal, Identification of bioactive polyphenolic compounds and assessment of antioxidant activity of Origanum acutidens, International Letters of Natural Sciences 66 (2017) 1-8.

DOI: 10.56431/p-b670qx

Google Scholar

[6] M. Şişecioğlu, M. Çankaya, İ. Gülçin, H. Özdemir, Interactions of melatonin and serotonin with lactoperoxidase enzyme, Journal of Enzyme Inhibition and Medicinal Chemistry 25 (2010) 779-783.

DOI: 10.3109/14756360903425239

Google Scholar

[7] A. Aras, E. Bursal, M. Dogru, UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. Lydiae, Journal of Applied Pharmaceutical Science 6 (2016) 9-13.

DOI: 10.7324/japs.2016.601102

Google Scholar

[8] E. Köksal, H. Tohma, Ö. Kılıç, Y. Alan, A. Aras, İ. Gülçin, E. Bursal, Assessment of antimicrobial and antioxidant activities of Nepeta trachonitica: analysis of its phenolic compounds using HPLC-MS/MS, Scientia Pharmaceutica 85 (2017) 1-14.

DOI: 10.3390/scipharm85020024

Google Scholar

[9] F. Sefidkon, M. Dabiri, A. Alamshahi, Analysis of the essential oil of Nepeta fissa CA Mey from Iran, Flavour and Fragrance Journal 17 (2002) 89-90.

DOI: 10.1002/ffj.1045

Google Scholar

[10] S.M. Talebi, M.G. Nohooji, M. Yarmohammadi, Infraspecific variations in essential oil compositions of Nepeta fissa from Iran, Nusantara Bioscience 9 (2017) 318-321.

DOI: 10.13057/nusbiosci/n090313

Google Scholar

[11] P. Davis, Flora Of Turkey And The East Aegean Islands, Vol. 5, Edinburgh Univ, Pres, Edinburgh (1975).

Google Scholar

[12] M.N. Bingol, E. Bursal, LC-MS/MS Analysis of phenolic compounds and ın vitro antioxidant potential of Stachys lavandulifolia Vahl. var. brachydon Boiss, International Letters of Natural Sciences 72 (2018) 28-36.

DOI: 10.18052/www.scipress.com/ilns.72.28

Google Scholar

[13] A. Aras, E. Bursal, Y. Alan, F. Türkan, H. Alkan, Ö. Kılıç, Polyphenolic content, antioxidant potential and antimicrobial activity of Satureja boissieri, Iranian Journal of Chemistry and Chemical Engineering 37 (2018) 209-219.

Google Scholar

[14] İ. Gülçin, A.Z. Tel, A.C. Gören, P. Taslimi, S.H. Alwasel, Sage (Salvia pilifera): determination of its polyphenol contents, anticholinergic, antidiabetic and antioxidant activities, Journal of Food Measurement and Characterization 13 (2019) 2062-2074.

DOI: 10.1007/s11694-019-00127-2

Google Scholar

[15] P. Taslimi, İ. Gulçin, Antioxidant and anticholinergic properties of olivetol, Journal of Food Biochemistry (2018) e12516.

DOI: 10.1111/jfbc.12516

Google Scholar

[16] E. Bursal, R. Boğa, Polyphenols analysed by UHPLC-ESI-MS/MS and antioxidant activities of molasses, acorn and leaves of oak (Quercus robur subsp. pedunculiflora), Progress in Nutrition 20(1-S) (2018) 167-175.

Google Scholar

[17] N. Turan, R. Adıguzel, K. Buldurun, E. Bursal, Spectroscopic, thermal and antioxidant properties of novel mixed ligand-metal complexes obtained from saccharinate complexes and azo dye ligand (mnppa), International Journal of Pharmacology 12 (2016) 92-100.

DOI: 10.3923/ijp.2016.92.100

Google Scholar

[18] E. Bursal, Kinetic properties of peroxidase enzyme from chard (Beta vulgaris Subspecies cicla) leaves, International Journal of Food Properties 16 (2013) 1293-1303.

DOI: 10.1080/10942912.2011.585729

Google Scholar

[19] J. Żuchowski, Ł. Pecio, E. Reszczyńska, A. Stochmal, New phenolic compounds from the roots of lentil (Lens culinaris), Helvetica Chimica Acta 99 (2016) 674-680.

DOI: 10.1002/hlca.201600117

Google Scholar