[1]
B. Huma et al., Human Benefits from Maize. Scholar Journal of Applied Sciences and Research. 2(2) (2019) 4-7.
Google Scholar
[2]
W.C. Galinat, Evolution of corn. Adv Agron. 47 (1992) 203-231.
Google Scholar
[3]
M. Arshad et al., Genetic variability and Correlation studies in chickpea (Cicer arietinum L.). Pakistan J Botany. 35(4) (2003) 605-611.
Google Scholar
[4]
C. Barata, M.J. Carena, Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross. Euphytica. 154 (2006) 339-349.
DOI: 10.1007/s10681-006-9155-y
Google Scholar
[5]
Z. Bhatti et al., First report of morphometric identification of Spodoptera frugiperda J.E Smith (Lepidoptera: Noctuidae) an invasive pest of maize in Southern Sindh, Pakistan. Asian J Agric Biol. 2021(1)
DOI: 10.35495/ajab.2020.03.169
Google Scholar
[6]
M. Imran, A. Ali, M.E. Safdar, The impact of different levels of nitrogen fertilizer on maize hybrids performance under two different environments. Asian J Agric Biol. 4 (2021) 202010527
DOI: 10.35495/ajab.2020.10.527
Google Scholar
[7]
B. Annor et al., Testcross performance and combining ability of early maturing -maize inbreds under multiple-stress environments. 9 (2019) 13809.
DOI: 10.1038/s41598-019-50345-3
Google Scholar
[8]
T. Assefa et al., Line × tester analysis of tropical high land maize (Zea mays L.) inbred lines top crossed with three east African maize populations. The JAPS 8 (2017) 126-138.
DOI: 10.4236/ajps.2017.82010
Google Scholar
[9]
O. Rodrigo et al., Genetic divergence among maize hybrids and correlations with heterosis and combining ability. Acta Sci Agron. 34 (2012) 37-44.
DOI: 10.4025/actasciagron.v34i1.11979
Google Scholar
[10]
M. Aslam et al., Combining ability analysis for yield traits in diallel crosses of maize. The JAPS 27 (2017) 136-143.
Google Scholar
[11]
R. Bernardo, Testcross selection prior to further inbreeding in maize: mean performance and realized genetic variance. Crop Sci. 36(4) (1996) 867-871.
DOI: 10.2135/cropsci1996.0011183x003600040008x
Google Scholar
[12]
J. Siamey, K.D. Ansah, D.A. Kotey, Evaluation of maize genotypes for resistance to Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) infestation. Asian J Agric Biol. (3) (2021) 202010549
DOI: 10.35495/ajab.2020.10.549
Google Scholar
[13]
D.F. Austin et al., Genetic mapping in maize with hybrid progeny across testers and generations: grain yield and grain moisture. Crop Sci. 40 (2000) 30-39.
DOI: 10.2135/cropsci2000.40130x
Google Scholar
[14]
T. Dhliwayo et al., Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci. 49 (2009) 1201-1210.
DOI: 10.2135/cropsci2008.06.0354
Google Scholar
[15]
D.A. Kotey, Y. Assefa, V.J. Berg, Comparative incidence of maize stem borers on GM and non-GM maize under two smallholder cropping systems in the Eastern Cape province of South Africa. Asian J. Agric. Biol. 3 (2021) 202010550
DOI: 10.35495/ajab.2020.10.550
Google Scholar
[16]
N.F.H. Abello et al., Fermented Japanese snail fertilizer reduced vapor pressure deficit which improves indigenous corn growth (Zea mays var. Tiniguib). Asian J Agric Biol. 4 (2021) 202102087
DOI: 10.35495/ajab.2021.02.087
Google Scholar
[17]
H. Rahman et al., Evaluation of maize S2 lines in testcross combinations I: Flowering and Morphological traits. Pak. J. Agric. 42(3) (2010)1619-1627.
Google Scholar
[18]
A.I.I. Menkir, Charles, Testcross performance and diversity of white maize lines derived from backcrosses containing exotic germplasm. Euphytica. 155 (2007) 417-428.
DOI: 10.1007/s10681-006-9344-8
Google Scholar
[19]
S.S. Shah, Recurrent selection for maydis leaf blight resistance and grain yield improvement in maize. PhD Dissertation KPK. Agri. Uni. Pesh. (2006).
Google Scholar
[20]
H. Ceballos, J.A. Deutsch, H. Gutierrez, Recurrent selection for resistance to Exserohilum turcicum. L in eight subtropical maize populations. Crop Sci. 31 (1991) 964-971.
DOI: 10.2135/cropsci1991.0011183x003100040025x
Google Scholar
[21]
M.R. Carlone, W.A. Russell, Evaluation of S2 maize lines reproduced for several generations by random mating within lines II. Comparisons for test cross performance of the original and advanced S2 and S8 lines. Crop Sci. 29 (1989) 899-904.
DOI: 10.2135/cropsci1989.0011183x002900040011x
Google Scholar
[22]
B.L. Peiris, A.R. Hallauer, Comparison of half-sib and full-sib reciprocal recurrent selection and their modifications in simulated populations. Euphytica.155 (2005) 417-428.
DOI: 10.31274/rtd-180813-11005
Google Scholar
[23]
P. Ajmone-Marsan et al., Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet. 102 (2001) 230-243.
DOI: 10.1007/s001220051640
Google Scholar
[24]
D.F. Austin, M. Lee, L.R. Veldboom, Genetic mapping in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genetics. 102 (2001) 163-176.
DOI: 10.1007/s001220051632
Google Scholar
[25]
S.S. Shah et al., Reaction of two maize synthetics to maydis leaf blight following recurrent selection for grain yield. Sarhad J Agri. 22(2) (2006) 263-269.
Google Scholar
[26]
J.C. Burgess, D.R. West, Selection for Grain Yield following Selection for Ear Height in Maize. Crop Sci. 33 (1993) 679-682.
DOI: 10.2135/cropsci1993.0011183x003300040006x
Google Scholar
[27]
B.C. Abel, L.M. Pollak, Rank comparisons of unadapted maize populations by testers and per se evaluation. Crop Sci. 31 (1991) 650-656.
DOI: 10.2135/cropsci1991.0011183x003100030021x
Google Scholar
[28]
N. Manivannan, Character association and component analysis in maize. Madras Agric J. 85 (1998) 293-294.
Google Scholar
[29]
N. Hussainet al., Performance of maize varieties under agro-ecology of D.I. Khan. Sarhad J. Agric. 20 (2004) 83-85.
Google Scholar