Study of SHG and LE-O Susceptibilities of InAs Crystal: Linear Absorption Taken into Account

Article Preview

Abstract:

We applied a model involving two coupled anharmonic oscillators (electronic and ionic) to estimate the Second Harmonic Generation (SHG) and Linear Electro-Optic (LE-O) susceptibilities of InAs crystal. The crystal of InAs belongs to III-V group compounds owing cubic zinc-blende-type structure. Linear absorption is considered for the selected spectral region 1250 nm – 390 nm. So, the contribution of the imaginary part of the involved complex linear ionic susceptibility to the resultant SHG and LE-O susceptibilities is taken into account and hence the absolute value of complex-linear ionic susceptibility is used in place of the complex-linear ionic susceptibility in the computation of SHG and LE-O coefficients. All of the four constants (nonlinear strength factors), appearing in the model, are determined with the help of experimental data of SHG susceptibility measured in the selected region of 1076 nm-535 nm. Application of such calculated nonlinear strength factors in the concerned modelled expressions, SHG and LE-O susceptibility coefficients are computed as a function of frequency to illustrate the dispersion in the region of 1250 nm –390 nm.

Info:

* - Corresponding Author

[1] R.W. Boyd and B. R. Masters, Nonlinear optics, J. Biomed. Opt., 14(2), (2009) 029902 CrossRef.

Google Scholar

[2] S.R. Marder, J.E. Sohn and G.D. Stucky. Materials for Nonlinear Optics Chemical Perspectives; ACS Symp. Ser., American Chemical Society, (1991) Search PubMed.

Google Scholar

[3] S. S. Zahraa, S. A. Raad and J. T. Khawla, Study of the Nonlinear Optics Properties of Lithium Triborate Crystal by Using Z-Scan Technique, Int. J. Sci. Res., (2016) 1683–1687 Search PubMed.

Google Scholar

[4] Ali Hussain Reshak, J. Chem. Phys. 125, (2006) 034710.

Google Scholar

[5] U. Kreibig and M. Vollmer. Optical Properties of Metal Clusters[M]//Optical properties of metal clusters/, Springer-Verlag, (1995) p.278–279 Search PubMed.

DOI: 10.1007/978-3-662-09109-8

Google Scholar

[6] B. Raneesh, I. Rejeena and P. U. Rehana, et al., Nonlinear optical absorption studies of sol-gel derived Yttrium Iron Garnet (Y3Fe5O12) nanoparticles by Z-scan technique, Ceram. Int.,) 38(3), (2012) 1823–1826 CrossRef CAS.

DOI: 10.1016/j.ceramint.2011.10.005

Google Scholar

[7] C.G. Garrett, Nonlinear optics, anharmonic oscillator and pyroelectricity, IEEE J. of Quantum Electronics 4 (3), (1968) 70-84.

DOI: 10.1109/jqe.1968.1075030

Google Scholar

[8] A.A. Ketterson, W.T. Masselink, G. S. Gedyman, J. Klem, C. K. Peng, W. F. Kopp, H. Morkoc, and K. R. Gleason, IEEE Trans. Electron Devices 33, (1986) 564. Google Scholar Crossref

DOI: 10.1109/t-ed.1986.22533

Google Scholar

[9] I. Kimukin, N. Biyikli, T. Kartaloglu, O. Aytur, and E. Ozbay, IEEE J. Sel. Top. Quantum Electron. 10, (2004) 766. Google ScholarCrossref

DOI: 10.1109/jstqe.2004.833891

Google Scholar

[10] B. F. Lavine, Phys. Letters, 25, (1969) 440.

Google Scholar

[11] B. F. Lavine, Phys. Letters, 22,(1969) 787.

Google Scholar

[12] R.C. Miller et al., Phys. Rev. (to be published).

Google Scholar

[13] C.L. Tang and C. Flytzanis, Charge transfer model of the nonlinear susceptibilities of polar Semiconductors, Phys. Rev. B, 4, (Oct. 1971) 2520.

DOI: 10.1103/physrevb.4.2520

Google Scholar

[14] S.S. Jha and N. Bloembergen, Nonlinear optical properties of group IV and III-V compounds, IEEE J. Quantum Electronics, 4 (10), (1968) 670-673.

DOI: 10.1109/jqe.1968.1074942

Google Scholar

[15] C.L. Tang, A simple molecular-orbital theory of nonlinear optical properties of group III-V and II-VI compounds, IEEE J. Quantum Electronics, 9 (7), (1973) 755-762.

DOI: 10.1109/jqe.1973.1077730

Google Scholar

[16] Flytzanis and J. Ducuing, Second-order optical susceptibilities of III-V semiconductors, Phys. Rev.,178 (15 Feb.1969) 1218.

DOI: 10.1103/physrev.178.1218

Google Scholar

[17] R.K. Chang, J. Ducuing and N. Bloembergen, Dispersion of the optical nonlinearity in Semiconductors, Phys. Rev. Lett.,15 (30 Aug. 1965) 415.

DOI: 10.1103/physrevlett.15.415

Google Scholar

[18] W. Cochran, Crystal stability and theory of ferroelectricity, Advances in Phys., 9 (36) (1960) 387.

Google Scholar

[19] C. P. Singh, Optical nonlinearities in III-V group compounds. PhD thesis, Department of Physics, Ch. Charan Singh University, Meerut, U.P., India, 2003.

Google Scholar

[20] David A. Roberts, Simplified characterization of uniaxial and biaxial nonlinear crystals: a plea for standardization of nomenclature and conventions, IEEE J. Quantum Electronics, 28 (10) (1992) 2057-2074.

DOI: 10.1109/3.159516

Google Scholar

[21] M. Sugie and K. Tada, Jap. J. of Applied Phy. 12,(Feb.1973) 215.

Google Scholar