[1]
Kumar, R., and Chand, F., "Asymptotic Study to the N-Dimensional Radial Schrödinger Equation for the Quark-Antiquark System", Communications in Theoretical Physics, 59(5) (2013) 528–532
DOI: 10.1088/0253-6102/59/5/02
Google Scholar
[2]
Faustov, R. N., Galkin, O. V., Tatarintsev, A. V., and Vshivtsev, A. S., "Spectral problem of the radial Schrödinger equation with confining power potentials", Theoretical and Mathematical Physics, 113(3) (1997) 1530–1542
DOI: 10.1007/bf02634513
Google Scholar
[3]
Vairo, A., "The heavy quark potential in pNRQCD", Nuclear Physics B - Proceedings Supplements, 86(1-3) (2000) 521–524
DOI: 10.1016/s0920-5632(00)00615-0
Google Scholar
[4]
VEGA, A. and FLORES, J., "Heavy quarkonium properties from Cornell potential using variational method and supersymmetric quantum mechanics", Pramana –J. Phys., 87:73 (2016) Page 1 of 7.
DOI: 10.1007/s12043-016-1278-7
Google Scholar
[5]
Mateu, V., Ortega, P. G., Entem, D. R., and Fernández, F., "Calibrating the naïve Cornell model with NRQCD", Eur. Phys. J. C , 79 (4) (2019) 323.
DOI: 10.1140/epjc/s10052-019-6808-2
Google Scholar
[6]
Kaczmarek, O., "Recent Developments in Lattice Studies for Quarkonia", Nuclear Physics A, 910–911 (2013) 98–105.
DOI: 10.1016/j.nuclphysa.2012.12.044
Google Scholar
[7]
Fingberg, J., "Heavy quarkonia at high temperature", Physics Letters B, 424(3-4) (1998) 343–354.
DOI: 10.1016/s0370-2693(98)00205-6
Google Scholar
[8]
Kuchin, S. M., and Maksimenko, N. V., "Theoretical Estimations of the Spin Averaged Mass Spectra of Heavy Quarkonia and Bc Mesons", Univ. J. Phys. Appl., 1(3) (2013) 295-298.
DOI: 10.13189/ujpa.2013.010310
Google Scholar
[9]
Ahmadov, A. I., Aydin, C., and Uzun, O., "Bound state solution of the Schrödinger equation at finite temperature", J. Phys.: Conf. Ser., 1194 (2019), 012001
DOI: 10.1088/1742-6596/1194/1/012001
Google Scholar
[10]
Abu-Shady, M., Abdel-Karim, T. A., and Khokha, E. M., "Binding Energies and Dissociation Temperatures of Heavy Quarkonia at Finite Temperature and Chemical Potential in the N-Dimensional Space", Advances in High Energy Physics, (2018) 1–12
DOI: 10.1155/2018/7356843
Google Scholar
[11]
Abu-Shady, M., "N-dimensional Schrödinger equation at finite temperature using the Nikiforov–Uvarov method", Journal of the Egyptian Mathematical Society, 25(1) (2017) 86–89
DOI: 10.1016/j.joems.2016.06.006
Google Scholar
[12]
Al-Jamel, A. F., and Widyan, H., "Heavy Quarkonium Mass Spectra in A Coulomb Field Plus Quadratic Potential Using Nikiforov-Uvarov Method", Applied Physics Research, 4(3) (2012) 94-99. doi:10.5539/apr. v4n3p94
DOI: 10.5539/apr.v4n3p94
Google Scholar
[13]
Abdelmadjid Maireche, "The Klein–Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space", Modern Physics Letters A, (2019) 2050015(11 pages).
DOI: 10.1142/s0217732320500157
Google Scholar
[14]
Darroodi, M., Mehraban, H., and Hassanabadi, H., "The Klein–Gordon equation with the Kratzer potential in the noncommutative space", Modern Physics Letters A, 33, No. 35 (2018) 1850203 (6 pages).
DOI: 10.1142/s0217732318502036
Google Scholar
[15]
Gnatenko, K. P., "Parameters of noncommutativity in Lie-algebraic noncommutative space", Physical Review D. 99(2) (2019) 026009-1.
DOI: 10.1103/physrevd.99.026009
Google Scholar
[16]
Gnatenko, K. P., and Tkachuk, V. M., "Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity", Physics Letters A, 381(31) (2017) 2463–2469.
DOI: 10.1016/j.physleta.2017.05.056
Google Scholar
[17]
Bertolami, O., Rosa, J. G., C. M. L. De aragao, Castorina, P., and Zappala, D., "Scaling of variables and the relation between noncommutative parameters in noncommutative space phase", Modern Physics Letters A, 21(10) (2006) 795–802.
DOI: 10.1142/s0217732306019840
Google Scholar
[18]
Abdelmadjid Maireche, "A Recent Study of Excited Energy Levels of Diatomics for Modified more General Exponential Screened Coulomb Potential: Extended Quantum Mechanics", J. Nano- Electron. Phys. 9(3) (2017) 03021
DOI: 10.21272/jnep.9(3).03021
Google Scholar
[19]
Djemaï, A. E. F. and Smail, H., "On Quantum Mechanics on Noncommutative Quantum Phase Space. Commun. Theor. Phys. (Beijing, China). 41(6) (2004) 837–844.
DOI: 10.1088/0253-6102/41/6/837
Google Scholar
[20]
YUAN Yi, LI Kang, WANG Jian-Hua and CHEN Chi-Yi, "Spin-1/2 relativistic particle in a magnetic field in NC phase space", Chinese Physics C. 34(5) (2010) 543–547.
DOI: 10.1088/1674-1137/34/5/005
Google Scholar
[21]
Bertolami, O., and Leal, P., "Aspects of phase-space noncommutative space phase", Physics Letters B, 750 (2015) 6–11.
DOI: 10.1016/j.physletb.2015.08.024
Google Scholar
[22]
Bastos, C., Bertolami, O., Dias, N.C., and Prata, J.N., "Weyl–Wigner formulation of noncommutative space phase", Journal of Mathematical Physics, 49(7) (2008) 072101.
DOI: 10.1063/1.2944996
Google Scholar
[23]
Zhang, J., "Fractional angular momentum in non-commutative spaces", Physics Letters B, 584(1-2) (2004) 204–209.
DOI: 10.1016/j.physletb.2004.01.049
Google Scholar
[24]
Gamboa, J., Loewe, M., and Rojas, J. C., "Noncommutative space phase", Phys. Rev. D, 64 (2001) 067901.
DOI: 10.1103/PhysRevD.64.067901
Google Scholar
[25]
Chaichian, M., Sheikh-Jabbari and Tureanu, A., "Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED", Physical Review Letters, 86(13) (2001) 2716–2719.
DOI: 10.1103/physrevlett.86.2716
Google Scholar
[26]
Heisenberg, W., Letter to R. Peierls (1930), in 'Wolfgang Pauli, Scientific Correspondence', Vol. III, p.15, Ed. K. von Meyenn (1985) Springer : Verlag).
Google Scholar
[27]
Snyder, H., "Quantized Space-Time", Physical Review, 71(1), 1947, 38–41
DOI: 10.1103/physrev.71.38
Google Scholar
[28]
Abdelmadjid Maireche, "A New Nonrelativistic Investigation for the Lowest Excitations States of Interactions in One-Electron Atoms, Muonic, Hadronic and Rydberg Atoms with Modified Inverse Power Potential", International Frontier Science Letters., 9 (2016) 33-46.
DOI: 10.18052/www.scipress.com/IFSL.9.33
Google Scholar
[29]
Abdelmadjid Maireche, "New Bound States for Modified Vibrational-Rotational Structure of Super singular Plus Coulomb Potential of the Schrödinger Equation in One-Electron Atoms", International Letters of Chemistry Physics and Astronomy, 73 (2017) 31-45.
DOI: 10.18052/www.scipress.com/ILCPA.73.31
Google Scholar
[30]
Abdelmadjid Maireche "Extended of the Schrödinger Equation with New Coulomb Potentials plus Linear and Harmonic Radial Terms in the Symmetries of Noncommutative space phase", J. Nano- Electron. Phys., 10 No 6 (2018) 06015-1 - 06015-7.
DOI: 10.21272/jnep.10(6).06015
Google Scholar
[31]
Abdelmadjid Maireche, "Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Yukawa Potential for Spin 1/2 Particles", International Frontier Science Letters, 11 (2017) 29-44. DOI: https://doi.org/10.18052/www.scipress.com/ IFSL.11.29.
DOI: 10.18052/www.scipress.com/ifsl.11.29
Google Scholar
[32]
Gamboa, J. Loewe, M., and Rojas, J.C., "Noncommutative quantum mechanics", Phys. Rev. D. 64 (2001) 067901.
DOI: 10.1103/PhysRevD.64.067901
Google Scholar
[33]
Gouba, L., "A comparative review of four formulations of noncommutative quantum mechanics, Int. J. Mod. Phys. A 31(19) (2016) 1630025. https://doi.org/10.1142/s0217751x 16300258
DOI: 10.1142/s0217751x16300258
Google Scholar
[34]
Gradshteyn, I. S., and Ryzhik, I. M., "Table of Integrals, Series and Products", 7th. ed.; Elsevier, edited by Alan Jeffrey (the University of Newcastle upon Tyne, England) and Daniel Zwillinger (Rensselaer Polytechnic Institute USA) 2007.
Google Scholar
[35]
Abdelmadjid Maireche "A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potential". Sri Lankan Journal of Physics, 21(1) (2020) 11–36
DOI: 10.4038/sljp.v21i1.8069
Google Scholar