A New Model to Describe Quarkonium Systems under Modified Cornell Potential at Finite Temperature in pNRQCD

Article Preview

Abstract:

In the present work, the three-dimensional modified radial Schrödinger equation is analytically solved. The nonrelativistic interactions under new modified Cornell potential (NMCP, in short) at finite temperature, are extended to the symmetries of nonrelativistic noncommutative space phase (NRNSP, in short), using the generalized Bopp’s shift method in the case of perturbed nonrelativistic quantum chromodynamics (pNRQCD). W generalize this process by adding multi-variable coupling potentials , and together with the modified Cornell potential model in three-dimensional nonrelativistic quantum mechanics noncommutative phase space (3D-NCSP, in short). The new energy eigenvalues and the corresponding Hamiltonian operator are calculated in 3D-NCSP symmetries instead of solving the modified Schrödinger equation with the Weyl Moyal star product. The present results, in (3D-NCSP), are applied to the charmonium and bottomonium masses at finite temperature. The present approach successfully generalizes the energy eigenvalues at finite temperature in 3D-NCSP symmetries. It is found that the perturbative solutions of the discrete spectrum and quarkonium mass can be expressed by the Gamma function, the discreet atomic quantum numbers of the state and the potential parameters ( ), in addition to noncommutativity parameters ( and ). The total complete degeneracy of new energy levels of NMCP changed to become equals to the value instead the values in ordinary quantum mechanics. Our obtained results are in good agreement with the already existing literature in NCSP. Keywords: Schrödinger Equation, Heavy Quarkonium System, Cornell Potential, Noncommutative Space Phase, Bopp’s Shift Method. Subject Classification Numbers: 03.65.-w; 03.65.Ge; 03.65. Fd; 03.65.Ca

Info:

* - Corresponding Author

[1] Kumar, R., and Chand, F., "Asymptotic Study to the N-Dimensional Radial Schrödinger Equation for the Quark-Antiquark System", Communications in Theoretical Physics, 59(5) (2013) 528–532

DOI: 10.1088/0253-6102/59/5/02

Google Scholar

[2] Faustov, R. N., Galkin, O. V., Tatarintsev, A. V., and Vshivtsev, A. S., "Spectral problem of the radial Schrödinger equation with confining power potentials", Theoretical and Mathematical Physics, 113(3) (1997) 1530–1542

DOI: 10.1007/bf02634513

Google Scholar

[3] Vairo, A., "The heavy quark potential in pNRQCD", Nuclear Physics B - Proceedings Supplements, 86(1-3) (2000) 521–524

DOI: 10.1016/s0920-5632(00)00615-0

Google Scholar

[4] VEGA, A. and FLORES, J., "Heavy quarkonium properties from Cornell potential using variational method and supersymmetric quantum mechanics", Pramana –J. Phys., 87:73 (2016) Page 1 of 7.

DOI: 10.1007/s12043-016-1278-7

Google Scholar

[5] Mateu, V., Ortega, P. G., Entem, D. R., and Fernández, F., "Calibrating the naïve Cornell model with NRQCD", Eur. Phys. J. C , 79 (4) (2019) 323.

DOI: 10.1140/epjc/s10052-019-6808-2

Google Scholar

[6] Kaczmarek, O., "Recent Developments in Lattice Studies for Quarkonia", Nuclear Physics A, 910–911 (2013) 98–105.

DOI: 10.1016/j.nuclphysa.2012.12.044

Google Scholar

[7] Fingberg, J., "Heavy quarkonia at high temperature", Physics Letters B, 424(3-4) (1998) 343–354.

DOI: 10.1016/s0370-2693(98)00205-6

Google Scholar

[8] Kuchin, S. M., and Maksimenko, N. V., "Theoretical Estimations of the Spin Averaged Mass Spectra of Heavy Quarkonia and Bc Mesons", Univ. J. Phys. Appl., 1(3) (2013) 295-298.

DOI: 10.13189/ujpa.2013.010310

Google Scholar

[9] Ahmadov, A. I., Aydin, C., and Uzun, O., "Bound state solution of the Schrödinger equation at finite temperature", J. Phys.: Conf. Ser., 1194 (2019), 012001

DOI: 10.1088/1742-6596/1194/1/012001

Google Scholar

[10] Abu-Shady, M., Abdel-Karim, T. A., and Khokha, E. M., "Binding Energies and Dissociation Temperatures of Heavy Quarkonia at Finite Temperature and Chemical Potential in the N-Dimensional Space", Advances in High Energy Physics, (2018) 1–12

DOI: 10.1155/2018/7356843

Google Scholar

[11] Abu-Shady, M., "N-dimensional Schrödinger equation at finite temperature using the Nikiforov–Uvarov method", Journal of the Egyptian Mathematical Society, 25(1) (2017) 86–89

DOI: 10.1016/j.joems.2016.06.006

Google Scholar

[12] Al-Jamel, A. F., and Widyan, H., "Heavy Quarkonium Mass Spectra in A Coulomb Field Plus Quadratic Potential Using Nikiforov-Uvarov Method", Applied Physics Research, 4(3) (2012) 94-99. doi:10.5539/apr. v4n3p94

DOI: 10.5539/apr.v4n3p94

Google Scholar

[13] Abdelmadjid Maireche, "The Klein–Gordon equation with modified Coulomb plus inverse-square potential in the noncommutative three-dimensional space", Modern Physics Letters A, (2019) 2050015(11 pages).

DOI: 10.1142/s0217732320500157

Google Scholar

[14] Darroodi, M., Mehraban, H., and Hassanabadi, H., "The Klein–Gordon equation with the Kratzer potential in the noncommutative space", Modern Physics Letters A, 33, No. 35 (2018) 1850203 (6 pages).

DOI: 10.1142/s0217732318502036

Google Scholar

[15] Gnatenko, K. P., "Parameters of noncommutativity in Lie-algebraic noncommutative space", Physical Review D. 99(2) (2019) 026009-1.

DOI: 10.1103/physrevd.99.026009

Google Scholar

[16] Gnatenko, K. P., and Tkachuk, V. M., "Weak equivalence principle in noncommutative phase space and the parameters of noncommutativity", Physics Letters A, 381(31) (2017) 2463–2469.

DOI: 10.1016/j.physleta.2017.05.056

Google Scholar

[17] Bertolami, O., Rosa, J. G., C. M. L. De aragao, Castorina, P., and Zappala, D., "Scaling of variables and the relation between noncommutative parameters in noncommutative space phase", Modern Physics Letters A, 21(10) (2006) 795–802.

DOI: 10.1142/s0217732306019840

Google Scholar

[18] Abdelmadjid Maireche, "A Recent Study of Excited Energy Levels of Diatomics for Modified more General Exponential Screened Coulomb Potential: Extended Quantum Mechanics", J. Nano- Electron. Phys. 9(3) (2017) 03021

DOI: 10.21272/jnep.9(3).03021

Google Scholar

[19] Djemaï, A. E. F. and Smail, H., "On Quantum Mechanics on Noncommutative Quantum Phase Space. Commun. Theor. Phys. (Beijing, China). 41(6) (2004) 837–844.

DOI: 10.1088/0253-6102/41/6/837

Google Scholar

[20] YUAN Yi, LI Kang, WANG Jian-Hua and CHEN Chi-Yi, "Spin-1/2 relativistic particle in a magnetic field in NC phase space", Chinese Physics C. 34(5) (2010) 543–547.

DOI: 10.1088/1674-1137/34/5/005

Google Scholar

[21] Bertolami, O., and Leal, P., "Aspects of phase-space noncommutative space phase", Physics Letters B, 750 (2015) 6–11.

DOI: 10.1016/j.physletb.2015.08.024

Google Scholar

[22] Bastos, C., Bertolami, O., Dias, N.C., and Prata, J.N., "Weyl–Wigner formulation of noncommutative space phase", Journal of Mathematical Physics, 49(7) (2008) 072101.

DOI: 10.1063/1.2944996

Google Scholar

[23] Zhang, J., "Fractional angular momentum in non-commutative spaces", Physics Letters B, 584(1-2) (2004) 204–209.

DOI: 10.1016/j.physletb.2004.01.049

Google Scholar

[24] Gamboa, J., Loewe, M., and Rojas, J. C., "Noncommutative space phase", Phys. Rev. D, 64 (2001) 067901.

DOI: 10.1103/PhysRevD.64.067901

Google Scholar

[25] Chaichian, M., Sheikh-Jabbari and Tureanu, A., "Hydrogen Atom Spectrum and the Lamb Shift in Noncommutative QED", Physical Review Letters, 86(13) (2001) 2716–2719.

DOI: 10.1103/physrevlett.86.2716

Google Scholar

[26] Heisenberg, W., Letter to R. Peierls (1930), in 'Wolfgang Pauli, Scientific Correspondence', Vol. III, p.15, Ed. K. von Meyenn  (1985) Springer : Verlag).

Google Scholar

[27] Snyder, H., "Quantized Space-Time", Physical Review, 71(1), 1947, 38–41

DOI: 10.1103/physrev.71.38

Google Scholar

[28] Abdelmadjid Maireche, "A New Nonrelativistic Investigation for the Lowest Excitations States of Interactions in One-Electron Atoms, Muonic, Hadronic and Rydberg Atoms with Modified Inverse Power Potential", International Frontier Science Letters., 9 (2016) 33-46.

DOI: 10.18052/www.scipress.com/IFSL.9.33

Google Scholar

[29] Abdelmadjid Maireche, "New Bound States for Modified Vibrational-Rotational Structure of Super singular Plus Coulomb Potential of the Schrödinger Equation in One-Electron Atoms", International Letters of Chemistry Physics and Astronomy, 73 (2017) 31-45.

DOI: 10.18052/www.scipress.com/ILCPA.73.31

Google Scholar

[30] Abdelmadjid Maireche "Extended of the Schrödinger Equation with New Coulomb Potentials plus Linear and Harmonic Radial Terms in the Symmetries of Noncommutative space phase", J. Nano- Electron. Phys., 10 No 6 (2018) 06015-1 - 06015-7.

DOI: 10.21272/jnep.10(6).06015

Google Scholar

[31] Abdelmadjid Maireche, "Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Yukawa Potential for Spin 1/2 Particles", International Frontier Science Letters, 11 (2017) 29-44. DOI: https://doi.org/10.18052/www.scipress.com/ IFSL.11.29.

DOI: 10.18052/www.scipress.com/ifsl.11.29

Google Scholar

[32] Gamboa, J. Loewe, M., and Rojas, J.C., "Noncommutative quantum mechanics", Phys. Rev. D. 64 (2001) 067901.

DOI: 10.1103/PhysRevD.64.067901

Google Scholar

[33] Gouba, L., "A comparative review of four formulations of noncommutative quantum mechanics, Int. J. Mod. Phys. A 31(19) (2016) 1630025. https://doi.org/10.1142/s0217751x 16300258

DOI: 10.1142/s0217751x16300258

Google Scholar

[34] Gradshteyn, I. S., and Ryzhik, I. M., "Table of Integrals, Series and Products", 7th. ed.; Elsevier, edited by Alan Jeffrey (the University of Newcastle upon Tyne, England) and Daniel Zwillinger (Rensselaer Polytechnic Institute USA) 2007.

Google Scholar

[35] Abdelmadjid Maireche "A theoretical investigation of nonrelativistic bound state solution at finite temperature using the sum of modified Cornell plus inverse quadratic potential". Sri Lankan Journal of Physics, 21(1) (2020) 11–36

DOI: 10.4038/sljp.v21i1.8069

Google Scholar