[1]
IPCC/WMO/UNEP, 1992. The Supplementary Report of the IPCC Scientific Assessment. In Climate Change. Houghton, J.T., Callander, B.A., and Varney, S.K. (eds.), Cambridge University Press, Cambridge, UK. p.200.
DOI: 10.1177/095968369300300311
Google Scholar
[2]
Intergovernmental Panel on Climate Change (IPPC), 1996. The Science of Climate Change. In Climate Change 1995. Cambridge University Press, Cambridge, UK.
DOI: 10.1017/s0025315400041011
Google Scholar
[3]
Allen, Jr., L.H., 1990. Plant Responses to Rising Carbon Dioxide and Potential Interactions with Air Pollutants. J. Environ. Qual. 19: 15-34.
DOI: 10.2134/jeq1990.00472425001900010002x
Google Scholar
[4]
Kimball, B.A., 1983. Carbon Dioxide and Agricultural Yield. An Assemblage and Analysis of 430 Prior Observations, Agron. J. 75: 1211-1235.
Google Scholar
[5]
Kimball, B. A., 1983. Carbon Dioxide and Agricultural Yield. An Assemblage and Analysis of 770 Prior Observations, WCL Rep. 14, U. S. Water Conservation Laboratory, Phoenix, AZ, p.71.
Google Scholar
[6]
Rogers, H. H. and Dahlman, R. C., 1993. Crop Response to CO2 Enrichment. Vegetatio 104-105: 117-131.
DOI: 10.1007/bf00048148
Google Scholar
[7]
Battisti, D. S. and Naylor, R. L. 2009 Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323: 240-244.
DOI: 10.1126/science.1164363
Google Scholar
[8]
Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Accessed from (http://www.grida.no/climate/ipcc/emission/076.htm) retrieved 26 June 2007.
Google Scholar
[9]
Fraser, E., 2008. Crop yield and climate change. Accessed from (http://www.vulnerable foodsystems.com). Retrieved on 14 September 2009.
Google Scholar
[10]
UN Report on Climate Change. Accessed from (http://www.ipcc.ch/SPM2feb07.pdf). Retrieved 25 June 2007 Archived (http://web.archive.org/20070621143239/http:/ /www.ipcc.ch/SPM2feb07.pdf) June 21, 2007 at the Wayback Machine.
Google Scholar
[11]
"Climate 'could devastate crops'" (http://news.bbc.co.uk/2/hi/science/nature/7220807 .stm) BBC News. 31 January 2008. http://news.bbc.co.uk/2/hi/science/nature/ 7220807.stm.
DOI: 10.1049/esn.1985.0071
Google Scholar
[12]
Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008). "Prioritizing climate change adaptation needs for food security in 2030". Science 319 (5863): 607–10. doi:10.1126/science.1152339 (http://dx.doi.org/10.1126%2 Fscience.1152339) PMID 18239122 (//www.ncbi.nlm.nih.gov/pubmed/18239122).
DOI: 10.1126/science.1152339
Google Scholar
[13]
Olesen, J. E. and Bindi, M., 2002. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron., 16: 239-262.
DOI: 10.1016/s1161-0301(02)00004-7
Google Scholar
[14]
Reilly, J. et al., 2003. US agriculture and climate change: new results. Clim. Change. 57: 43-69.
Google Scholar
[15]
Tubiello, F. N., Rosenzweig, C., Goldberg, R. A., Jagtap, S. & Jones, J. W. 2002 Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: wheat, potato, maize, and citrus. Clim. Res. 20: 259-270.
DOI: 10.3354/cr020259
Google Scholar
[16]
IPCC, 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, UK.
DOI: 10.1017/9781009157896
Google Scholar
[17]
Cure, J.D., Acock, B., 1986. Crop responses to carbon dioxide doubling: a literature survey. Agric. For Meteorol. 38: 127-145.
DOI: 10.1016/0168-1923(86)90054-7
Google Scholar
[18]
Allen, L.H. Jr, Boote, K.J., Jones, J.W., Jones, P.H., Valle, R.R., Acock, B., Rogers, H.H. and Dahlman, R.C., 1987. Response of vegetation to rising carbon dioxide: photosynthesis, biomass and seed yield of soybean. Global Biogeochem Cycles 1: 1-14.
DOI: 10.1029/gb001i001p00001
Google Scholar
[19]
Kimball, B. A., 1983. Carbon Dioxide and Agricultural Yield. An Assemblage and Analysis of 770 Prior Observations, WCL Rep. 14, U. S. Water Conservation Laboratory, Phoenix, AZ, p.71.
Google Scholar
[20]
Rosenzweig, C. and Hillel, D., 1995. Potential impacts of climate change on agriculture and world food supply. Consequences Summer: 24: 32.
Google Scholar
[21]
Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R. and Prasad, P. V. V., 2000 Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82: 159-167.
DOI: 10.1016/s0167-8809(00)00224-3
Google Scholar
[22]
Wollenweber, B., Porter, J. R. and Schellberg, J. 2003 Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci. 189, 142-150.
DOI: 10.1046/j.1439-037x.2003.00025.x
Google Scholar
[23]
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K.. and Wiltshire, A., 2010. Implications of climate change for agricultural productivity in the early twenty-first century, Phil. Trans. R. Soc. B 365.
DOI: 10.1098/rstb.2010.0158
Google Scholar
[24]
Holton, J. R., Curry, J. A. and Pyle, J. A., 2003. Encyclopedia of atmospheric sciences. New York, NY: Academic Press.
Google Scholar
[25]
Wiley Interdisciplinary Reviews: Climate Change, 2010. Drought under global warming: a review. Accessed from (http://onlinelibrary.wiley.com/doi/ 10.1002/ wcc.81/abstract), October 19, 2010.
Google Scholar
[26]
Drought modeling – A review. Accessed from (http://www.sciencedirect.com/ science/article/pii/S0022169411002393). J. Hydrol., 6 June 2011.
Google Scholar
[27]
USGCRP, 2009. Global Climate Change Impacts in the United States . Karl, T.R., J.M. Melillo, and T.C. Peterson (eds.). United States Global Change Research Program. Cambridge University Press, New York, NY, USA.
DOI: 10.1080/00221341.2013.770905
Google Scholar
[28]
IPCC, 2007. Summary for Policymakers: C. Current knowledge about future impacts. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Parry, M.L., et al. (ed.)). Cambridge University Press. Cambridge, UK.
DOI: 10.1017/9781009325844
Google Scholar
[29]
NOAA reports 2005 global temperature similar to 1998 record warm year. Accessed from (http://www.publicaffairs.noaa.gov/releases2006/jan06/noaa06-013.html) (Press release). NOAA. 30th January, 2006.
Google Scholar
[30]
Sacks, W.J., Deryng, D., Foley, J.A. and Ramankutty, N., 2010. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19: 607-620.
DOI: 10.1111/j.1466-8238.2010.00551.x
Google Scholar
[31]
Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet. 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles 22: GB1022
DOI: 10.1029/2007gb002947
Google Scholar
[32]
Peters, G.P., Marland, G., Le Quéré, C., Boden, T., Canadell, J.G., Raupach, M.R., 2011. Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nat. Clim. Change. 2: 2-4.
DOI: 10.1038/nclimate1332
Google Scholar
[33]
Global Carbon Project, 2011. Carbon budget and trends 2010. Accessed from (http:// www.globalcarbonproject.org/carbonbudget). Retrieved on 1st August, 2012.
Google Scholar
[34]
Stone, P., 2001. The effects of heat stress on cereal yield and quality. In Crop Responses and Adaptations to Temperature Stress. Basra, A.S. (ed). Food Products Press, Binghamton, NY, pp.243-291.
DOI: 10.1201/9781003421221-8
Google Scholar
[35]
Crafts-Brandner, S.J. and Salvucci, M.E., 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol., 129: 1773-1780.
DOI: 10.1104/pp.002170
Google Scholar
[36]
Willett, K.M., Gillett, N.P., Jones, P.D. and Thorne, P.W., 2007. Attribution of observed surface humidity changes to human influence. Nature, 449: 710-712.
DOI: 10.1038/nature06207
Google Scholar
[37]
Ray, J.D., Gesch, R.W., Sinclair, T.R. and Hartwell, A.L., 2002. The effect of vapour pressure deficit on maize transpiration response to a drying soil. Plant Soil, 239: 113-121.
DOI: 10.1023/a:1014947422468
Google Scholar
[38]
Trnka, M., Olesen, J.E., Kersebaum, K.C., Skjelvåg, A.O., Eitzinger, J., Seguin, B., Peltonen-Sainio, P., Rötter, R., Iglesias, A. and Orlandini, S., 2011. Agroclimatic conditions in Europe under climate change. Glob. Change Biol., 17: 2298-2318.
DOI: 10.1111/j.1365-2486.2011.02396.x
Google Scholar
[39]
Ramankutty, N., Foley, J.A., Norman, J., McSweeney, K., 2002. The global distribution of cultivable lands: current patterns and sensitivity to possible climate change. Glob. Ecol. Biogeogr. 11: 377-392.
DOI: 10.1046/j.1466-822x.2002.00294.x
Google Scholar
[40]
Ziska, L.H., Blumenthal, D.M., Runion, G.B., Hunt, E.R. and Diaz-Soltero, H., 2011. Invasive species and climate change: an agronomic perspective. Clim. Change, 105: 13-42.
DOI: 10.1007/s10584-010-9879-5
Google Scholar
[41]
Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., Thomson, A.M., Wolfe, D., 2011. Climate impacts on agriculture: implications for crop production. Agron. J., 103: 351-370.
DOI: 10.2134/agronj2010.0303
Google Scholar
[42]
Intergovernmental Panel on Climate Change, 1996. Climate Change 1995, eds. Houghton J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K (Cambridge Univ. Press, Cambridge, U.K.).
DOI: 10.1017/s002531540003157x
Google Scholar
[43]
Andreae, M., 1995. In World Survey of Climatology, ed. Henderson-Sellers, A. (Elsevier, Amsterdam), Vol. 16, pp.347-398.
Google Scholar
[44]
Hansen, J., Sato, M, Ruedy, R., Lacis, A. and Oinas, V., 2000. Global warming in the twenty-first century: An alternative scenario Proc. Natl. Acad. Sci., USA, 97(18): 9875-9880.
DOI: 10.1073/pnas.170278997
Google Scholar
[45]
Wilkinson, S., Mills, G., Illidge, R., Davies, W.J., 2012. How is ozone pollution reducing our food supply? J. Exp. Bot., 63: 527-536.
DOI: 10.1093/jxb/err317
Google Scholar
[46]
Van Dingenen, R., Dentener, F.J., Raes, F., Krol, M.C., Emberson, L. and Cofala, J., 2009. The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos. Environ., 43: 604-618.
DOI: 10.1016/j.atmosenv.2008.10.033
Google Scholar
[47]
McKee, I.F., Bullimore, J.F., Long, S.P., 1997. Will elevated CO2 concentrations protect the yield of wheat from O-3 damage? Plant Cell Environ., 20: 77-84.
DOI: 10.1046/j.1365-3040.1997.d01-1.x
Google Scholar
[48]
McKee, I.F., Mulholland, B.J., Craigon, J., Black, C.R. and Long, S.P., 2000. Elevated concentrations of atmospheric CO2 protect against and compensate for O3 damage to photosynthetic tissues of field-grown wheat. New Phytol., 146: 427-435.
DOI: 10.1046/j.1469-8137.2000.00659.x
Google Scholar
[49]
Reynolds, M.P., Balota, M., Delgado, M., Amani, I. and Fischer, R.A., 1994. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust. J. Plant Physiol., 21: 717-730.
DOI: 10.1071/pp9940717
Google Scholar
[50]
Biswas, D.K., Xu, H., Li, Y.G., Sun, J.Z., Wang, X.Z., Han, X.G. and Jiang, G.M., 2008. Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past. Glob. Change Biol., 14: 46-59.
DOI: 10.1111/j.1365-2486.2007.01477.x
Google Scholar
[51]
Asada, H. and Matsumoto, J., 2009. Effects of rainfall variation on rice production in the Ganges–Brahmaputra Basin. Clim. Res. 38: 249-260.
DOI: 10.3354/cr00785
Google Scholar
[52]
Welch, J.R., Vincent, J.R., Auffhammer, M., Moya, P.F., Dobermann, A. and Dawe, D., 2010. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci., USA, 107: 14562-14567.
DOI: 10.1073/pnas.1001222107
Google Scholar
[53]
Easterling, W. E. et al. 2007. Food, fibre and forest products. In Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry, M. L., Canziani, O. F., Palutikof, J. P., Linden P. J. v. d. and Hanson, C. E., (eds). Cambridge University Press, Cambridge, UK. pp.273-313.
DOI: 10.1017/9781009325844.007
Google Scholar
[54]
Lobell B. D. and Gourdji M. S. 2012. The influence of climate change on global crop productivity. Plant Physiology, 160 (2012) 1686-1697.
DOI: 10.1104/pp.112.208298
Google Scholar
[55]
Solomon S., Plattner K-G., Knutti R., Friedlingstein P. (2009) Irreversible climate change due to carbon dioxide emissions, PNAS, 106(6); 1704-1709.
DOI: 10.1073/pnas.0812721106
Google Scholar
[56]
L. U. Grema, A. B. Abubakar, O. O. Obiukwu, International Letters of Natural Sciences 3 (2013) 21-27.
Google Scholar
[57]
Hyginus A. Nwona, International Letters of Natural Sciences 4 (2013) 1-9.
Google Scholar
[58]
Schneider, SH (2007). "19.3.1 Introduction to Table 19.1" (http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch19s19-3-1.html) . In ML Parry, et al, (eds.). Chapter 19: Assessing Key Vulnerabilities and the Risk from Climate Change. Climate change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press (CUP): Cambridge, UK: Print version: CUP. This version: IPCC website.
DOI: 10.1017/9781009325844
Google Scholar
[59]
ISBN 0-521-88010-6. http://www.ipcc.ch/publications_and_data/ar4/wg2/en/ch19s19-3-1.html. Retrieved 2011-05-04. ( Received 20 February 2014; accepted 26 February 2014 )
Google Scholar