[1]
Allen W.C., Hook P.B., Beiderman J.A., Stein O.R. (2012). Temperature and wetland plant species effects on wastewater treatment and root zone oxidation. Journal of Environmental Quality, 31: 1010-1016.
DOI: 10.2134/jeq2002.1010
Google Scholar
[2]
Bailey L.D. (1976). Effects of temperature and root on denitrification in a soil. Canadian Journal of Soil Science, 56: 79-87.
DOI: 10.4141/cjss76-012
Google Scholar
[3]
Baker D.B., Richards R.P. (2002). Phosphorus budgets and riverine phosphorus expert in northwestern Ohio watersheds. Journal of Environmental Quality, 31(1): 96-108.
DOI: 10.2134/jeq2002.9600
Google Scholar
[4]
Baker L.A. (2008). Design consideration and applications for wetland treatment of high- nitrate waters. Water Science and Technology, 38(1): 389-395.
DOI: 10.2166/wst.1998.0088
Google Scholar
[5]
Carleton J.N., Grizzard T.J., Godrej A.N., Post H.E. (2011). Factors affecting the performance of stormwater treatment wetlands. Water Research, 35(6): 1552-1562.
DOI: 10.1016/s0043-1354(00)00416-4
Google Scholar
[6]
Carvalho K.M., Martin D.F. (2011). Removal of aqueous selenium by four aquatic plants. Journal of Aquatic Plant Management, 39: 33-36.
Google Scholar
[7]
Eriksson P.G. (2011). Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes. Biogeochemistry, 55: 29-44.
Google Scholar
[8]
Fennessy M.S., Brueske C.C., Mitsch W.J. (2002). Sediment deposition patterns in restored freshwater wetlands using sediment traps. Ecological Engineering, 3(4): 409-428.
DOI: 10.1016/0925-8574(94)00010-7
Google Scholar
[9]
Hao X., van Loosdrecht M.C.M. (2004). Model-based evaluation of COD influence on a partial nitrification-Anammox biofilm (CANON) process. Water Science and Technology, 49(11-12): 83-90.
DOI: 10.2166/wst.2004.0810
Google Scholar
[10]
Langergraber G. (2005). The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: a simulation study. Water Science and Technology, 51(9): 213-223.
DOI: 10.2166/wst.2005.0322
Google Scholar
[11]
Malmaeus J.M., Hakanson L. (2003). A dynamic model to predict suspended particulate matter in lakes. Ecological Modelling, 167(3): 247-262.
DOI: 10.1016/s0304-3800(03)00166-2
Google Scholar
[12]
Rasit N.B. (2006). Landfill leachate treatment using subsurface flow constructed wetlands enhanced with magnetic fields. M.S. Thesis, Malaysian University of Technology (Terengganu Darul Iman, Malaysia).
Google Scholar
[13]
Salih F.M. (2013). Formulation of a mathematical model to predict solar water disinfection. Water Research, 37(16): 3921-3927.
DOI: 10.1016/s0043-1354(03)00307-5
Google Scholar
[14]
Smith E., Gordon R., Madani A., Stratton G. (2005). Cold climate hydrological flow characteristics of constructed wetlands. Canadian Biosystems Engineering, 47: 1.1-1.7.
Google Scholar
[15]
Tao W., Hall K.J., Duff S.J.B. (2006). Heterotropic bacterial activities and treatment performance of surface flow constructed wetlands receiving wood waste leachate. Water Environment Research, 78(7): 671-679.
DOI: 10.2175/106143006x99821
Google Scholar
[16]
Thullen J.S., Sartoris J.J., Nelson S.M. (2005). Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance. Ecological Engineering, 25(5): 583-593.
DOI: 10.1016/j.ecoleng.2005.07.013
Google Scholar
[17]
Vymazal J. (2005). Horizontal sub-surface flow and hybrid constructed wetland systems for wastewater treatment. Ecological Engineering, 25(2005): 478-490.
DOI: 10.1016/j.ecoleng.2005.07.010
Google Scholar
[18]
Wang G.-P., Liu J.-S., Tang J. (2004). The long-term nutrient accumulation with respect to anthropogenic impacts in sediments from two freshwater marshes (Xiamghai Wetlands, Northeast China). Water Research, 38(30): 4463-4474.
DOI: 10.1016/j.watres.2004.08.030
Google Scholar
[19]
Zachritz W.H., Lundie L.L., Wang H. (2006). Benzoic acid degradation by small, pilot- scale artificial wetlands filter. Ecological Engineering, 7(2): 105-116.
DOI: 10.1016/0925-8574(96)00003-1
Google Scholar
[20]
Stottmeister U, Wießner A, Kuschk P, Kappelmeyer U (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv., 22: 93-117.
DOI: 10.1016/j.biotechadv.2003.08.010
Google Scholar
[21]
Romero SE, Nunez LJ, Negrete M, Rios JEA, Hadad HR, Maine MA (2011). Hg, Cu, Cd, and Zn Accumulation in Macrophytes growing in tropical wetlands. Water Air Soil Pollut., 216: 361-373.
DOI: 10.1007/s11270-010-0538-2
Google Scholar
[22]
Sheoran AS, Sheoran V (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. J. Miner. Eng., 19:105-116.
DOI: 10.1016/j.mineng.2005.08.006
Google Scholar
[23]
Karim MR, Manshadi FD, Karpiscak MM, Gerba CP (2004). The persistence and removal of enteric pathogens in constructed wetlands. J. Water Res., 38: 1831-1837. ( Received 09 March 2014; accepted 14 March 2014 )
DOI: 10.1016/j.watres.2003.12.029
Google Scholar