[1]
De Villiers, A. J., M. W. Van Rooyrn, G. K. Theron, H. A. Van Deventer 1994. Germination of three namaqual and pioneer species, as influenced by salinity, temperature and light. Seed Science and Technology. 22: 427-433.
Google Scholar
[2]
Soltani, E., F. Akram Ghaderi, H. Maemar, 2008. The effect of priming on germination componentsand seedling growth of cotton seeds under drought. Journal of Agriculture. Science Nature. Resour., 14(5), Dec. 2007.
Google Scholar
[3]
McDonald, M. B., 1999. Seed deterioration: physiology, repair and assessment. Seed Science and Technology. 27: 177-237.
Google Scholar
[4]
Foolad, MR., JR. Hyman, GY. Lin, 1999. Relationships between cold and salt tolerance during seed germination in tomato: Analysis of response and correlated response to selection. Plant Breed. 118: 49-52.
DOI: 10.1046/j.1439-0523.1999.118001049.x
Google Scholar
[5]
Steppuhn, H., KG. Wall, 1999. Canada's salt tolerance testing laboratory. Canadian Agric. Eng., 41: 185-189.
Google Scholar
[6]
Rasool, S., A. Hameed, MM. Azooz, M. Rehman, TO. Siddiqi, P. Ahmad 2013. Salt stress: causes, types and response of plants. In: Ecophysiology and response of plants under salt stress, (Eds.: P. Ahmad, M.M. Azooz and M.N.V. Prasad). Springer LLC, New York, pp.1-24.
DOI: 10.1007/978-1-4614-4747-4_1
Google Scholar
[7]
Bybordi, A., J. Tabatabaei, 2009. Effect of salinity stress on germination and seedlingproperties in canola cultivars (Brassica napus L.) Notulae Botanica Horti Agrobotanici Cluj-Napoca 37:71-76.
Google Scholar
[8]
Ghoulam, C., K. Fares, 2001. Effect of salinity on seed germination and early seedling growth of sugar beet. Seed Sci. Technol., 29: 357-364.
Google Scholar
[9]
Tester, M., R. Davenport, 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot 91: 503-550.
Google Scholar
[10]
Polesskaya, O.G., E.I. Kashirina, N.D. Alekhina, 2006. Effect of salt stress on antioxidant system of plants as related to nitrogen nutrition Russ. J. Plant Physiol 53: 186-192.
DOI: 10.1134/s1021443706020063
Google Scholar
[11]
Houimli, S. I. M., M. Denden, S. B. E., Hadj, 2008. Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide Eur. Asia. J. Bio. Sci 2: 83-90.
Google Scholar
[12]
Almansouri, M.J., M. Kinet S.Lutts, 2001. Effect of salt and osmotic stress on Germination in durum wheat (Triticum durum Desf.) Plant and Soil 231: 243-254.
DOI: 10.1016/s0176-1617(99)80253-3
Google Scholar
[13]
Sinha, T. S., D. Sharma, P. C. Singh, H. B. Sharma, 2004. Rapid screening methodology for tolerance during germination and seedling emergence in Indian mustard (Brassica juncea). Indian J. Plant Physiol. (special issue).
Google Scholar
[14]
Parvaiz, A., S. Satyawati, 2008. Salt stress and phyto-biochemical responses of plants – a review. Plant Soil and Environment 54: 89-99.
DOI: 10.17221/2774-pse
Google Scholar
[15]
Hajer, AS., AA. Malibari, HS. Al-Zahrani, OA. Almaghrabi, 2006. Responses of three tomato cultivars to sea water salinity 1. Effect of salinity on the seedling growth. African Journal of Biotechnology 5: 855-861.
Google Scholar
[16]
Saleh, B., 2012. Effect of salt stress on growth and chlorophyll content of some cultivated cotton varieties grown in Syria. Communications in soil science and plant analysis 43: 1976-1983.
DOI: 10.1080/00103624.2012.693229
Google Scholar
[17]
Mahajan, S., N. Tuteja, 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys., 444, 139-158.
DOI: 10.1016/j.abb.2005.10.018
Google Scholar
[18]
Kayani, S. A., M. Rahman, 1988. Effects of NaCl salinity on shoot growth, stomatal size and its distribution in Zea mays L. Pakistan Journal of Botany, 20, 75-81.
Google Scholar
[19]
Munns, R., 2002. Comparative physiology of salt and water stress. Plant Cell Environment, 25, 239-250.
DOI: 10.1046/j.0016-8025.2001.00808.x
Google Scholar
[20]
Khodarahmpour, Z., 2011. Screening maize (Zea mays L.) hybrids for salt stress Tolerance at germination stage. African Journal of Biotechnology, 10 (71), 15959-15965.
DOI: 10.5897/ajb11.2493
Google Scholar
[21]
Moussa, H. R., 2001. Physiological and biochemical studies on the herbicide (Dual) by using radio labelled technique. Ph.D. Thesis, Faculty of Science Ain-Shams University.
Google Scholar
[22]
Ashraf, M., T. McNeally, 1990. Improvement of salt tolerance in maize for selection And breeding. Plant Breeding, 104, 101-107.
DOI: 10.1111/j.1439-0523.1990.tb00410.x
Google Scholar
[23]
Hadas, A., 2004. Seed bed Preparation: The Soil Physical Environment of Germinating Seeds. In Benech-Arnold, R. L. and R. A. Sanchez (Eds.) Handbook of Seed Physiology: Applications to Agriculture (p.480). New York: Food Product Press.
Google Scholar
[24]
Rehman, S., P. J. C. Harris, W. F. Bourne, J. Wilkin, 1996. The Effect of Sodium Chloride on Germination and the Potassium and Calcium Contents of Acacia Seeds. Seed Science Technology, 25, 45-57.
Google Scholar
[25]
Mass, EV., GJ. Hoffman, 1977. Crop Salt Tolerance Current Assessment. J. Irrigation Drainage Division, 103: 115-134.
DOI: 10.1061/jrcea4.0001137
Google Scholar
[26]
Ouda, SAE., SG. Mohamed, FA. Khalıl, 2008. Modeling the effect of different stress conditions on maize productivity using yield-stress model. Int. J. Natural Eng. Sci. 2(1): 57-62.
Google Scholar
[27]
Kitajima, K., M. Fenner, 2000. Ecology of seedling regeneration In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. CABI Publishing, Wallingford, UK, 331 359.
DOI: 10.1079/9780851994321.0331
Google Scholar
[28]
Jamil, M., E S. Rha, 2004. The effect of salinity (NaCl) on the germination and seedling Of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea L.). Korean J. plant Res 7: 226-232.
Google Scholar
[29]
Werner, J. E., R. R. Finkelstein, 1995. Arabidopsis Mutants with Reduced Response to NaCl and Osmotic Stress. Physiology of Plant, 93, 659-666.
DOI: 10.1111/j.1399-3054.1995.tb05114.x
Google Scholar
[30]
Demir, M., I. Arif, 2003. Effects of Different Soil Salinity Levels on Germination and Seedling Growth of Safflower (Carthamus Tinctoriusl). Turkish Journal of Agriculture, 27, 221- 227.
Google Scholar
[31]
Mckensie, B. D., Y. A. Leshen, 1994. Stress and Stress Coping in Cultivated Plants. London: Kluwer Academic Publisher, p.256.
Google Scholar
[32]
Munns R., A. Termaat, 1986. Whole-Plant Responses to Salinity. Australian Journal of Plant Physiology, 13, 43-60.
DOI: 10.1071/pp9860143
Google Scholar
[33]
Mujeeb-ur-Rahman., A. S. Umed, Z. Mohammad, G. Shereen, 2008. Effects of NaCl Salinity on Wheat (Triticum aestivum L.) Cultivars World Journal of Agricultural Sciences, 4(3), 398-403.
Google Scholar
[34]
International Rules for Seed Testing (ISTA) 2008. International Seed Testing Association Chapter 5: Germination test. Pp 1-57.
DOI: 10.15258/istarules.2015.01
Google Scholar
[35]
Black, M., H. W. Pritchard, 2002. Desiccation and survival in plants drying without dying. New York: CABI publishing.
DOI: 10.1079/9780851995342.0000
Google Scholar
[36]
Abdual-baki, A. A., J.D. Anderson, 1973. Relationship between decarboxilation of glutamic acid and vigour in soybean seed, Crop Sci., 13, 222-226.
Google Scholar
[37]
Ashraf, M. H., R. Athar, P. J. C. Harris, T. R. Kwon, 2008. Some prospective strategies for improving crop salt tolerance Adv. Agron 97: 45-110.
DOI: 10.1016/s0065-2113(07)00002-8
Google Scholar
[38]
Rahman, M., SA. Kayani, S. Gul, 2000. Combined effects of temperature and salinity stress on corn cv. Sunahry, Pak. J. Biol. Sci. 3(9): 1459-1463.
Google Scholar
[39]
Mirza. RA., K. Mahmood, 1986. Comparative effect of sodium chloride and sodium bicarbonate on germination, growth and ion accumulation in Phaseolus aureus, Roxb, c.v. 6601. Biologia, 32: 257-268.
Google Scholar
[40]
Francois L E Donovan T and Maas E V (1984) Crop response and management on salt affected soils. In Pessaraki m (ed) Handbook of plant and Crop stress. Dekker, New York. 149-180.
DOI: 10.1201/9780824746728.ch8
Google Scholar
[41]
Francois, L E., 1985. Salinity effect on germination, growth and yield of two squash cultivars. Hort. Sci 20: 1102-1104.
DOI: 10.21273/hortsci.20.6.1102
Google Scholar
[42]
Gupta, A K., J. Singh, N. Kaur, R. Singh, 1993. Effect of polyethylene glycol induced water Stress on uptake, inter conversion and transport of sugars in chickpea seedlings. Plant Physiol. Biochem 31: 743-747.
Google Scholar
[43]
Tezara, W., D. Martinez, E. Rengifo, A. Herrera, 2003. Photosynthetic response of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Ann. Bot. 92: 757-765.
DOI: 10.1093/aob/mcg199
Google Scholar
[44]
Meiri, A., A. Poljakoff-Mayber, 1970. Effect of various salinity regimes on growth, leaf expressions and transpiration rate of bean plants. Plant. Soil Sci. 109: 26-34.
DOI: 10.1097/00010694-197001000-00006
Google Scholar
[45]
Francois, LE., 1994. Growth, seed yield and oil contents of Canola grown under saline media. Agron. J. 26 (86): 233-237.
DOI: 10.2134/agronj1994.00021962008600020004x
Google Scholar
[46]
Giaveno, CD., RV. Ribeiro, GM. Souza, RF. De Oliveira, 2007. Screening of tropical maize for salt stress tolerance. Crop Breeding and Applied Biotechnology 7: 304-313.
DOI: 10.12702/1984-7033.v07n03a10
Google Scholar
[47]
Savvas, D., G. Gizas, G. Karras, N. Lydakis-Simantiris, G. Salahas, M. Papadimitriou N. Tsouka 2007. Interactions between Silicon and NaCl-Salinity in a Soilless Culture of Roses in Greenhouse. European Journal of Horticulture Science 72(2): 73-79.
Google Scholar
[48]
Larcher, W., 1995. Physiological plant ecology: Ecophysiology and stress physiology of functional groups. Springer-Verlag, Berlin, 540 p.
Google Scholar
[49]
Osorio, J., M L. Osorio, M M. Chaves, J S. Pereira, 1998. Tree physiology 18: 363-373.
Google Scholar
[50]
Gururaja, R. G., P. R. Patel, D. L. Bagdi, A. R. Chinchmalatpure, A. Nayak, M. K. Khandelwal, R. L. Meena, 2005. Effect of Saline Water Irrigation on Growth Ion Content and Forage Yield of Halophytic Grasses Grown on Saline Black Soil. Indian Journal of Plant Physiology, 10(4), 315-321.
Google Scholar
[51]
Parida, AK, AB. Das, 2005. Salt tolerance and salinity effects on plants: A Rev. Ecotoxicol. Environ. Safety 60: 324-349.
Google Scholar
[52]
Lauchli, A., 1984. Salt exclusion: an adaptation of legume for crops and pastures under saline condition. Pp. 171-187. In stoples RC, Toenniessen GH (eds), Salinity Tolerance in Plant Strategies for Crop Improvement. John Willey and Sons, NY.
Google Scholar
[53]
Seeman, JR., TD. Sharkey., 1986. Salinity and nitrogen effects on photosynthesis, ribulose-1,5-biphosphate carboxylase and metabolite poll sizes in Phaseolus vulgaris L. Plant Physiol. 82: 555-560.
DOI: 10.1104/pp.82.2.555
Google Scholar
[54]
Cha-um, S., C. Kirdmanee, 2009. Effect of salt stress on proline accumulation, photosynthetic ability and growth characters in two maize cultivars. Pak. J. Bot. 41: 87-98.
Google Scholar
[55]
P. O. Simeon, B. Ambah, International Letters of Natural Sciences 2 (2013) 1-10.
Google Scholar
[56]
D. Anbu, S. Sivasankaramoorthy, International Letters of Natural Sciences 3 (2014) 14-22.
Google Scholar
[57]
N. Silambarasan, S. Natarajan, International Letters of Natural Sciences 5 (2014) 24-34.
Google Scholar
[58]
E. Sanjai Gandhi, A. Sri Devi, L. Mullainathan, International Letters of Natural Sciences 5 (2014) 18-23.
Google Scholar
[59]
L. Mullainathan, A. Sridevi, S. Umavathi, E. Sanjai Gandhi, International Letters of Natural Sciences 6 (2014) 1-8. ( Received 28 February 2014; accepted 05 March 2014 )
Google Scholar