Optimization and Production of Alkaline Proteases from Agro Byproducts Using a Novel Trichoderma viridiae Strain VPG 12, Isolated from Agro Soil

Article Preview

Abstract:

In recent years, there has been a phenomenal increase in the use of alkaline proteases as industrial catalysts. The aim of this work was to isolate potent fungal strain from the agricultural field of Gulbarga region of India, for the production of alkaline protease by utilizing the agricultural by products viz, red and green gram and Bengal gram as substrate under submerged fermentation process. Optimization of fermentation process parameters such as substrate (Red gram husk, green gram husk and Bengal gram husk) utilization, utilization, temperature, pH and incubation period for alkaline protease production was carried out. The maximum production of alkaline protease by Trichoderma VPG 12 was found at pH 8, temperature 35 °C, incubated for 120 h. But the activity of the enzyme could also be seen in a wide range of pH (5-9) and temperature (20-40 °C). With all these properties, the strain can be considered for industrial grade production of alkaline protease.

Info:

[1] Ashokan P., Mohini S., Shyam R. A., Building and Environment 42 (2007) 2311-2320.

Google Scholar

[2] Sumantha A., Larroche C., Ashok P., Food Technol. Biotechnol 44 (2) (2006) 211-220.

Google Scholar

[3] Godfrey T., Leather in Industrial Enzymology 2 (1996) 285-291.

Google Scholar

[4] McDonald C. E., Chen L. L., Analytical Biochemistry 10(1) (1965) 175-177.

Google Scholar

[5] Ellaiah P., Srinivasulu B., Adinarayana K., J Sci Indstr Res 61 (2002) 690-704.

Google Scholar

[6] Gupta R., Beg Q. K., Khan S., Chauhan B., Appl Microbiol Biotech 60 (2002) 381-395.

Google Scholar

[7] Kalpana Devi M., Rasheedha B. A., Gnanaprabhal G. R., Pradeep B.V., Palaniswamy M., Ind J Science Tech 1(7) (2008) 1-6.

Google Scholar

[8] Rao M. B., Tanksale A. M., Ghatge M. S., Deshpande V. V., Microbiol Mol Biol Rev 62 (1998) 597-635.

DOI: 10.1128/mmbr.62.3.597-635.1998

Google Scholar

[9] Nakayama M., Tomita Y., Suzuki H., Nisizawa K., J Biochem 79 (1976) 955-966.

Google Scholar

[10] Jeswani L. M., Baldev B., Adv in Pulse Pro Tech, Indian Council of Agricultural Research Publication (1988).

Google Scholar

[11] Uchikoba T., Mase T., Arima K., Yonezawa H., Kaneda M., Biol Chem 382 (2001) 1509-1513.

Google Scholar

[12] Manczinger L., Antal Z., Schoop A., Kredics L., Acta Biol Hung 52 (2001) 223-229.

Google Scholar

[13] Lowry O. H., Rosebrough N., Farr A. L., Ronadall R. L., J. Biol. Chem 193 (1951) 265-273.

Google Scholar

[14] Nehra K. S., Dhilon S., Chaudhary K., Singh R., Ind. J. Microbial. 42 (2002) 43-47.

Google Scholar

[15] Joo H. S., Ganeshkumar C., Park G. C., Kim K. T., Seung R., Paik Chang C. S., Process Biochem 38 (2002) 155-159.

Google Scholar

[16] Gessesse A., Bioresour. Technol 62 (1997) 56- 61.

Google Scholar

[17] Zwietering M. H., Jongenburger I., Rombouts F. M., Van't Riet K., Applied and Environmental Microbiology 56 (1990) 1875-1881.

DOI: 10.1128/aem.56.6.1875-1881.1990

Google Scholar

[18] Malherbe S., Fromion V., Hilgert N., Sablayrolles J. M., Biotechnology and Bioengineering 86 (2004) 261–272. ( Received 22 April 2014; accepted 27 April 2014 )

DOI: 10.1002/bit.20075

Google Scholar