Optimization of Agrase Production by Alkaline Pseudomonas aeruginosa ZSL-2 Using Taguchi Experimental Design

Article Preview

Abstract:

The culture conditions for the production of extracellular agarase by Pseudomonas aeruginosa ZSL-2 were optimized using One-Factor-At-A-Time combined with orthogonal array design. One-Factor-At-A-Time method investigates the effect of time, temperature, NaCl, carbon sources, nitrogen sources and pH on agarase production. The optimized culture conditions obtained from the statistical analysis were temperature of 30 °C, pH 8.5, NH4NO3 2 g L-1 and agar 3 g L-1. The L9 orthogonal array design was used to select the fermentation parameters influencing the yield of agarase. The order of the factors affecting the fermentation process was found to be NH4NO3 > pH > agar > temperature, with temperature playing a significant role on the agarase production (p < 0.10). The higher yields than those in basal media culture were obtained in the final optimized medium with activity of 0.439 ± 0.013 U ml-1. Extracellular agarase hydrolysed agar into a range of oligosaccharides which were analysed by LC-ESI-MS spectrometry as anhydrogalactose, galactose, agarobiose, agarotetrose and agarohexaose.

Info:

* - Corresponding Author

[1] Kobayashi R., M. Takisada, T. Suzuki, K. Kirimura, S. Usami Biosci. Biotechnol. Biochem. 61 (1997) 162-163.

Google Scholar

[2] Osumi Y., M. Kawai, H. Amano, H. Noda Nippon Suisan Gakkaishi 64 (1998) 98-104.

Google Scholar

[3] Hu B., Q. Gong, Y. Wang, Y. Ma, J. Li, W. Yu Anaerobe. 12 (2006) 260-266.

Google Scholar

[4] Lavilla-Pitogo C. R., Aquaculture 102 (1992) 1-7.

Google Scholar

[5] Schroeder D. C., M. A. Jaffer, V. E. Coyne, Microbiology 149 (2003) 2919-2929.

Google Scholar

[6] Agbo J. A. C., M. O. Moss, J. Can. Microbiol. 115 (1979) 355-368.

Google Scholar

[7] Stanier R. Y., J. Bacteriol. 44 (1942) 555-570.

Google Scholar

[8] Suzuki H., Y. Sawai, T. Suzuki, K. Kawai, J. Biosci. Bioeng. 95 (2003) 328-334.

Google Scholar

[9] Hosoda A., M. Sakai, S. Kanazawa, Biosci. Biotechnol. Biochem. 67 (2003) 1048-1055.

Google Scholar

[10] Lakshmikanth M., S. Manohar, J. Patnakar, P. Vaishampayan, Y. Shouche, J. Lalitha World J. Microbiol. Biotechnol. 22 (2006a) 531-537.

DOI: 10.1007/s11274-005-9068-2

Google Scholar

[11] Changkyou, J., K. Hyuckjin, P. Chulhwan, L. Jinwon, Biotechnol. Bioproc. Eng. 17(5) (2012) 937-945.

Google Scholar

[12] Van der Meulen H. J., W. Harder, Antonie. Van. Leeuwenhoek. 41 (1975) 431-447.

DOI: 10.1007/bf02565087

Google Scholar

[13] Hu Z., B. K. Lin, Y. Xu, M. Q. Zhong, G. M. Liu, J. Appl. Microbiol. 106 (2009) 181-190.

Google Scholar

[14] Fu X. T., H. Lin, S. M. Kim, Proc. Biochem. 44 (2009) 1158-1163.

Google Scholar

[15] Choi H. J., J. B. Hong, J. J. Park, W. J. Chi, M. C. Kim, Y. K. Chang, S. K. Hong, Biotechnol. Bioproc. Eng. 16 (2011) 81-88.

Google Scholar

[16] Khambhaty Y., K. Mody, B. Jha, Biotechnol. Bioproc. Eng. 13 (2008) 584-591.

Google Scholar

[17] Ziayoddin M., S. Manohar, J. Lalitha, The Bioscan. 5 (2010) 279-283.

Google Scholar

[18] Dygert S., L. H. Li, D. Florida, J. A. Thoma, Anal. Biochem. 13 (1965) 367-374.

Google Scholar

[19] Lowry O. H., N. J. Rosebrough, A. L. Farr, R. J. Randall, J. of Biol. Chem. 193 (1951) 265-275.

Google Scholar

[20] Basawaraj A. K., S. Manohar, J. Lalitha, Biotechnology and Bioprocess Engineering 18 (2013) 333-341.

Google Scholar

[21] Jean W. D., W. Y. Shieh, T. Y. Liu, Int. J. Syst. Evol. Microbiol. 56 (2006) 1245-1250.

Google Scholar

[22] Hosoya S., Jae-Hyuk Jang, Mina Yasumoto-Hirose, Satoru Matsuda and Hiroaki Kasai Int. J. Syst. Evol. Microbiol. 59 (2009) 1262-1266.

Google Scholar

[23] Andrykovitch G., I. Marx, App. Environ. Microbiol. 54 (1988) 1061-1062.

Google Scholar

[24] Lakshmikanth M., S. Manohar, Y. Souche, J. Lalitha, World J. Microbiol. Biotechnol. 22 (2006b) 1087-1094.

Google Scholar

[25] Morrice L. M., M. W. McLean, F. B. Williamson, W. F. Long, Eur. J. Biochem. 135 (1983) 553-558.

Google Scholar

[26] Bae M.C., J. Kim, H. S. Shim, D. S. Byun, D. M. Cho, and H. R. Kim (2003). Second International Symposium on Fisheries Sciences and Technology for Academic Exchange between Hokkaido University and Pukyong National University, November 5, Hakodate, Japan.

Google Scholar

[27] Vera J., R. Alvarez, E. Murano, J. C. Slebe, O. Leon, Appl. Environ. Microbiol. 64 (1998) 4378-4383.

DOI: 10.1128/aem.64.11.4378-4383.1998

Google Scholar

[28] Leon O., L. Quintana, G. Peruzzo, J. C. Slebe, Appl. Environ. Microbiol. 58 (1992) 4060-4063.

DOI: 10.1128/aem.58.12.4060-4063.1992

Google Scholar

[29] Sugano Y., I. Terada, M. Arita, M. Noma, T. Matsumoto, Appl. Environ. Mcrobiol. 59(5) (1993) 1549-54.

Google Scholar

[30] Kim B. J., H. J. Kim, S. H. Ha, S. H. Hwang, D. S. Byun, T. H. Lee, J. Y. Kong Biotechnol. Letters 21 (1999) 1011-1015.

Google Scholar

[31] Ziayoddin M., S. Manohar, J. Lalitha, J of Microbial and Biochemical Technology 4 (2012) 096-095.

Google Scholar

[32] Bakhtiari M. R., M. G. Faezi, M. Fallahpour, A. Noohi, N. Moazami, Z. Amidi, Process Biochem. 41 (2006) 547-551.

DOI: 10.1016/j.procbio.2005.09.002

Google Scholar

[33] Krishna P. K., M. S. Venkata, R. R. Sreenivas, R. P. Bikas, P. N. Sarma, Biochem. Eng. J. 24 (2005) 17-26.

Google Scholar

[34] Sreenivas R. R., R. S. Prakasham, P. K. Krishna, S. Rajesham, P. N. Sarma, R. L. Venkateswar, Proc. Biochem. 39 (2004) 951-956.

Google Scholar

[35] Araki T., M. Hayakawa, L. Zhang, S. Karita, T. Morishita, J. Mar. Biotechnol. 6 (1998) 260-265.

Google Scholar

[36] Wang J., X. Jiang, H. Mou, H. Guan, J. Appl. Phyco. 16(5) (2004) 333-340

Google Scholar

[37] Aoki T., T. Araki, M. Kitamikado, Eur. J. Biochem. 187 (1990) 461- 465.

Google Scholar

[38] Fu X. T., H. Lin, S. M. Kim, Appl. Microbiol. Biotechnol. 78 (2008) 265-273.

Google Scholar

[39] Wang J., H. Mou, X. Jiang, H. Guan, Appl. Microbiol. Biotechnol. 71 (2006) 833-839.

Google Scholar

[40] Lakshmikanth M., S. Manohar, J. Lalitha, Proc. Biochem. 44 (2009) 999-1003. ( Received 22 June 2014; accepted 29 June 2014 )

Google Scholar