Increased Production of Carrageenase by Pseudomonas aeruginosa ZSL-2 Using Taguchi Experimental Design

Article Preview

Abstract:

The culture conditions for the production of carrageenase were optimized using one-factor-at-a-time method combined with orthogonal array design. With the one-factor-at-a-time method revealed optimal conditions for carrageenase production were 24 h of fermentation period, 28 °C incubation temperature at pH 8.0 with NaNO3 as nitrogen source and carrageenan as carbon source in MMS media. Further optimization of carrgeenase production by using orthogonal experimental design L9 (34) with four factors, temperature, pH, NH4NO3 and carrageenan with their relevant levels revealed optimised conditions for carrageenase production were temperature of 28 °C, pH 8.0, 2 g L-1 NaNO3 and 2 g L-1 carrageenan. The order of the factors affecting the fermentation process was found to be temperature > pH > NaNO3 > carrageenan. The temperature played a significant role on the carrageenase production. Higher carrageenase yield with activity of 0.542 ±0.045 U ml-1 was obtained in the optimised medium when compared to those of basal medium. Carrageenase hydrolysed products of carrageenan were identified by LC-ESI-MS as neocarrabiose, neocarrabiose-4 sulfate, neocarratetraose, neocarratetraose-4 sulfate, anhydrogalactose, galactose, galactose-4 sulphate and sulphate

Info:

* - Corresponding Author

[1] Michel G., Nyval-Collen P., Barbeyron T., Czjzek M., Helbert W., Appl Microbiol Biotechnol. 71 (2006) 23-33.

DOI: 10.1007/s00253-006-0377-7

Google Scholar

[2] Knutsen S., Myslabodski D., Larsen B., Usov A., Bot Mar. 37 (1994) 163-169.

Google Scholar

[3] Guzman-Maldonado H., Paredes-Lopez O., Critical Review in Food Science Nutrition 35 (1995) 373-403.

Google Scholar

[4] Beldman G, Mutter M, Searle-van Leeuwen MJF, van den Broek LAM, Schols HA, Voragen AGJ. Visser J, & Voragen, A.G.J. Amsterdam: Elsevier; 1996.

DOI: 10.1016/s0921-0423(96)80258-9

Google Scholar

[5] Weigl J., Yaphe W., Can J of Microbiol. 12 (1966) 939-947.

Google Scholar

[6] Le Gall Y., Braud J. P., Kloareg B., Plant Cell Rep 8 (1990) 582-585.

Google Scholar

[7] Ostgaard K., Wangen B. F., Knutsen S. H., Aasen I. M., Enzy Microbial Technol. 5 (1993) 326-333.

Google Scholar

[8] Mou H., Jiang X., Guan H., J of Appl Phycol. 15( 2003) 297-303.

Google Scholar

[9] Alban S., Schauerte A., Franz G., Carbohydrte Polymer 47 (2002) 267-276.

Google Scholar

[10] Arfors K. E., Ley K., J Lab Clinical Medicine 121 (1993) 201-202.

Google Scholar

[11] Suzuki N, Kitazato K, Takamatsu J, Saito H. Thrombosis and Haemostasis. 65 (1991)369-373.

Google Scholar

[12] Hiroishi S, Sugie K, Yoshida T, Morimoto J, Taniguchi Y, Imai S, Kurebayashi J. Cancer Letters. 167 (2001) 167:145-150.

DOI: 10.1016/s0304-3835(01)00460-8

Google Scholar

[13] Caceres P. J., Carlucci M. J., Damonte E. B., Matsuhiro B., Zuniga E. A., Phytochemistry 53 (2000) 81-86.

Google Scholar

[14] Knutsen S., Myslabodski D., Larsen B., Usov A Bot Mar 37 (1994) 163-169.

Google Scholar

[15] Araki T., Higashimoto Y., Morishita T., Fisheries Science. 65 (1999) 937-942.

Google Scholar

[16] Greasham R. L., Biotechnology. In: Rehm HJ, Read G, Puhler A, Stagler P (Eds.), Bioprocessing, vol. 3. VCH Publishers, Inc., New York; 1983.

Google Scholar

[17] Thomas D. M., J of Chem Engi. 6 (1977) 180.

Google Scholar

[18] Deming S. N., Morgan SL., Elsevier, Oxford; 1987.

Google Scholar

[19] Ziayoddin M., Shinde M., Lalitha J., The Bioscan. 4 (2012) 096-095.

Google Scholar

[20] Ziayoddin M., Manohar S, Lalitha J., The Bioscan. 5 (2010) 279-283.

Google Scholar

[21] Dygert S., Li L. H., Florida D., Thoma J. A., Anal Biochem. 13 (1965) 367-374.

Google Scholar

[22] Lowry O. H., Rosebrough N. J., Farr A.L., Randall R. J., J of Biol Chem. 193 (1951) 265-275.

Google Scholar

[23] Basawaraj A. K., Manohar S., Lalitha J. Biotechnology and Bioprocess Engineering 18 (2013) 333-341.

Google Scholar

[24] Khambhaty Y, Mody K, Jha B., Biotechnol Bioproc Engi. 12 (2007) 668-675.

Google Scholar

[25] Sarwar G., Matayoshi S., Oda H., Microbiol Immunol. 31 (1987) 869-877.

Google Scholar

[26] Potin P., Sanseau A., Le Gall Y., Rochas C., Kloareg B., Europ J of Biochem. 201 (1991) 241-247.

DOI: 10.1111/j.1432-1033.1991.tb16280.x

Google Scholar

[27] Mou H. J., Jiang X. L., Jiang X., Guan H. S., J Fish Sci China 9 (2002) 251-254.

Google Scholar

[28] Yaphe W., Baxter B., Appl Microbiol 3 (1955) 380-383

Google Scholar

[29] Sarwar G., Sakata T., Kakimoto D., Bulletin of the Japanese Society of Scientific Fisheries 49 (1983) 1689-1694.

Google Scholar

[30] Mao-hong Zhou, Jian-she Ma, Jun Li, Hai-ren Ye, Ke-xin Huang, Xiao-wei Zhao, Biotechnol Bioproc Engi 13 (2008) 545-551.

Google Scholar

[31] McLean M. M., Williamson F. B., Europ J of Biochem. 93 (1979) 553-558.

Google Scholar

[32] Lakshmikanth M., Manohar S., Patnakar J., Vaishampayan P., Shouche Y., Lalitha J., World J of Microbiol and Biotechnol. 22 (2006) 531-537.

DOI: 10.1007/s11274-005-9068-2

Google Scholar

[33] Agbo J., Moss M., Canadian J. Microbiol. 115 (1979) 355-368.

Google Scholar

[34] Li Y., Chen J., Lun S. Y., Rui X. S., Appl Microbiol and Biotechnol. 55 (2001) 680-685.

Google Scholar

[35] Tarng Y. S., Juang S. C., Chang C. H., J of Materials Processing Technology 128 (2002) 1-6.

Google Scholar

[36] Krishna P. K., Venkata M. S., Sreenivas R. R., Bikas R. P., Sarma P. N., Biochem Engi J. 24 (2005) 17-26.

Google Scholar

[37] Sreenivas R. R., Prakasham R. S., Krishna P. K., Rajesham S., Sarma P. N., Venkateswar R. L., Proc Biochem. 39 (2004) 951-956.

Google Scholar

[38] Antonopoulos A., Favetta P., Helbert W., Lafosse M., Anal Chem. 77 (2005) 4125-4136.

Google Scholar

[39] Aristotelis A., Hardouin J., Favetta P., Helbert W., Lafosse M., Rapid Communications In Mass Spectrometry 19 (2005) 2217-2226. ( Received 22 June 2014; accepted 30 June 2014 )

DOI: 10.1002/rcm.2051

Google Scholar