Pulsed-Field Gel Electrophoresis as a Molecular Tool for Characterizing Genomes of Certain Food-Borne Bacterial Isolates - A Review

Retracted:

Removed due to plagiarism

Article Preview

Abstract:

The evolutionary transition from phenotypic to molecular analysis of infectious disease in bacterial epidemiology led to the search for suitable approaches to ascertain genomic relatedness or heterogeneity between bacterial clinical isolates. Pulsed-field gel electrophoresis (PFGE) technique was developed for separating and analyzing long DNA fragments of several megabases in alternating electric field. Comparison of electrophoresis profiles of restriction enzyme-digested genomic DNA from bacterial isolates has proved to be a useful epidemiological tool for genetic discrimination of bacterial strains, detection of genetic relatedness, to locate the source of outbreak and to monitor the spread of the microorganisms in endemic zones. PFGE is considered as a gold standard method for typing of bacterial isolates because of the remarkable endurance of this technique as a typing method for the last 20 years in molecular epidemiology. In this current review the pros and cons of PFGE use in current molecular microbiological research are explored in the context of determination of genome organization of certain food-borne bacterial isolates causing infectious diseases in human beings.

Info:

Pages:

13-23

Online since:

November 2014

Authors:

Export:

Share:

Citation:

[1] Allard M.W., et al., PLoS ONE. 8(1) (2013) e55254

Google Scholar

[2] Barrett T.J., Gerner-Smidt P., Swaminathan B., Foodborne Pathogen Dis. 3 (2006) 20-31.

Google Scholar

[3] Basim H., Stall R.E., Minsavage J., Jones J., Phytopathology, 89 (1999) 1044-1049.

Google Scholar

[4] Bettelheim K.A., Crit Rev Microbiol 33 (2007) 67-87.

Google Scholar

[5] Beutin L., Martin A., J Food Prot. 75 (2012) 408-418.

Google Scholar

[6] Birren B.W., Lai E., Clark S.M., Houd L., Simon M.I., Nucl Acids Res. 16 (1988) 7563-7581.

Google Scholar

[7] Botteldoorn N. et al., Zoonoses Public Health 57(5) (2010) 345-357.

Google Scholar

[8] Bourgeois P.L., Lautier M., Berghe L.V.D., Gasson M.J., Ritzenthaler P., J. Bacteriology. 177 (1995) 2840-2850.

Google Scholar

[9] Bourke B., Sherman P., Louie H., Hani E., Islur P., Chan V.L., Microbiology 141 (1995) 2417-2424.

DOI: 10.1099/13500872-141-10-2417

Google Scholar

[10] Brooks J.T., Sowers E.G., Wells J.G., Greene K.D., Griffin P.M., Hoekstra R.M., Strockbine N.A., J Infect Dis. 192 (2005) 1422-1429.

DOI: 10.1086/466536

Google Scholar

[11] Call D.R., Brockman F.J., Chandler D.P., Int J Food Microbiol. 67 (2001) 71-80.

Google Scholar

[12] Cambray G., Guerout A.M., Mazel D., Annu Rev Genet 44 (2010) 141-166.

DOI: 10.1146/annurev-genet-102209-163504

Google Scholar

[13] Caprioli A., Morabito S., Bruge`re H., Oswald E., Vet Res 36 (2005) 289-311.

Google Scholar

[14] Carle G.F., Frank F., Olson M.V., Science. 232 (1986) 65-68.

Google Scholar

[15] Carle G.F., Olson M.V., Nucl. Acids Res. 14 (1984) 5 647-5663.

Google Scholar

[16] Cebula T.A., Brown E.W., Jackson S.A., Mammel M.K., Mukherjee A., LeClerc J.E., Expert Rev Mol Diagn 5 (2005) 431-445.

Google Scholar

[17] Chen C.-H., Shimada T., Elhadi N., Radu S., Nishibuchi M., Applied and Environmental Microbiology 70 (4) (2004) 1964-1972.

Google Scholar

[18] Chu G., Vollrath D., Davis R.W., Science 234 (1986) 1582-1585.

Google Scholar

[19] Churin Y.N., Shalak I.N., Borner T., Shestakov S.V., J. Bacteriology 177 (1995) 3337-3343.

Google Scholar

[20] Clawson M.L., Keen J.E., Smith T.P.L., Durso L.M., McDaneld T.G., Robert E., Mandrell R.E., Davis M.A., Bono J.L., Genome Biology 10 (2009) R56

DOI: 10.1186/gb-2009-10-5-r56

Google Scholar

[21] Correia A., Martin J.F., Castro J.M., Microbiology. 140 (1994) 2841-2847

Google Scholar

[22] Davis M.A., Hancock D.D., Besser T.E., Call D.R., J Clin Microbiol. 41(5) (2003) 1843-1849.

Google Scholar

[23] Dempsey J.A.F., Livaker W., Madhure A., Snodgrass T.L., Cannon J.G., J. Bacteriology 173 (1991) 5476-5486.

Google Scholar

[24] Elhadi N., Radu S., Chen C.-H., Nishibuchi M., Journal of Food Protection. 67(7) (2004) 1469-1475.

Google Scholar

[25] Faruque S.M., Chowdhury N., Kamruzzaman M., Dziejman M., Rahman M.H., Sack D.A., Nair G.B., Mekalanos J.J., Proc Natl Acad Sci U.S.A. 101 ( 7) (2004) 2123-2128.

DOI: 10.1073/pnas.0308485100

Google Scholar

[26] Fitzgerald C., Collins M., van Duyne S., Mikoleit M., Brown T., et al., J Clin Microbiol 45 (2007) 3323-3334.

DOI: 10.1128/jcm.00025-07

Google Scholar

[27] Fluit A.C., Schmitz F.J., Clin Microbiol Infect 10 (2004) 272-288.

Google Scholar

[28] Gardiner, K., Analytical Chemistry. 63 (1991) 658-665.

Google Scholar

[29] Goh K., Chua D., Beck B., McKee M.L, Bhagwat A.A., Arch Microbiol 193 (2010) 179-185.

Google Scholar

[30] Guard J., Morales C.A., Fedorka-Cray P., Gast R.K. BMC Res Notes. 26 (4) (2011) 369.

Google Scholar

[31] Gyles C.L., J Anim Sci. 85 (2007) E45-62.

Google Scholar

[32] Hudson C.R., Garcia M., Gast R.K., Maurer J.J., Avian Dis 45 (2001) 875-886.

Google Scholar

[33] Iguchi A., Osawa R., Kawano J., Shimizu A., Terajima J., Watanabe H., J Clin Microbiol. 40 (2002) 3079-3081.

Google Scholar

[34] Karmali M.A., Kidney Int Suppl. (2009) S4-7.

Google Scholar

[35] Kaufmann M.E., Pitt T.L., Methods in Practical Laboratory Bacteriology. 83 (1994)

Google Scholar

[36] Ke X., Gu B., Pan S., Tong M., Arch Microbiol. 193 (2011) 767-774.

Google Scholar

[37] Kudva I.T., Evans P.S., Perna N.T., Barrett T.J., Ausubel F.M., Blattner F.R., Calderwood S.B., J Bacteriol. 184 (2002) 1873-1879.

DOI: 10.1128/jb.184.7.1873-1879.2002

Google Scholar

[38] Lai E., Birren B.W., Clark S.M., Simon M.I., Hood L., Biotechniques. 7(1989) 34-42.

Google Scholar

[39] Laorden L. et al., J Clin Microbio. 48(12) (2010) 4563-4566.

Google Scholar

[40] Levene S.D., Methods in Molecular Biology (1992) 345-365.

Google Scholar

[41] Lina T.T. et al., PLoS ONE 9(10) (2014) e108735.

Google Scholar

[42] Liu F., Kariyawasam S., Jayarao B.M., Barrangou R., Gerner-Smidt P., Ribot E.M., Knabel S.J., Dudley E.G., Appl Environ Microbiol. 77(13) (2011) 4520-4526.

DOI: 10.1128/aem.00468-11

Google Scholar

[43] Madiyarov R.S., Bektemirov A.M., Ibadova G.A., Abdukhalilova G.K., Khodiev A.V., Bohidatta L., Sethabutr O., Mason C.J., Gut Pathog 2 (2010) 18.

DOI: 10.1186/1757-4749-2-18

Google Scholar

[44] Maloy S.R., Cronan J.E. Jr., Freifelder D., Microbial Genetics. Jones and Bartlett Publishers. Second Edition (1994) 45-47.

Google Scholar

[45] Mathusa E.C., Chen Y., Enache E., Hontz L., J Food Prot. 73 (2010) 1721-1736.

Google Scholar

[46] McQuiston J.R., Herrera-Leon S., Wertheim B.C., Doyle J., Fields P.I., Tauxe R.V., Logsdon J.M. Jr., J Bacteriol 190 (2008) 7060-7067.

DOI: 10.1128/jb.01552-07

Google Scholar

[47] Morita M., et al., Journal of Medical Microbiology. 59 (2010) 708-712.

Google Scholar

[48] Nandi B., Nandy R.K., Mukhopadhyay S., Nair G.B., Shimada T., Ghose A.C., Journal of Clinical Microbiology 38(11) (2000) 4145-4151.

Google Scholar

[49] Nastasi A., Pignato S., Mammina C., Giammanco G., Epidemiol Infect 110 (1993) 23-30.

DOI: 10.1017/s0950268800050640

Google Scholar

[50] Olivier V., Salzman N.H., Fullner Satchell K.J., Infection and Immunity 75(10) (2007) 5043-5051.

Google Scholar

[51] Olsen J.E., Skov M.N., Threlfall E.J., Brown D.J., J Med Microbiol 40 (1994) 15-22.

Google Scholar

[52] Olson A.B., Andrysiak A.K., Tracz D.M., Guard-Bouldin J., Demczuk W., Ng L.K., Maki A., Jamieson F., Gilmour M.W., BMC Microbiol. 1(7) (2007) 87

DOI: 10.1186/1471-2180-7-87

Google Scholar

[53] Pal P., Pal A., Niyogi S.K., Ramamurthy T., Bhadra R.K., Indian J Med Res. 137 (2013) 169-177.

Google Scholar

[54] Pyle L.E., Taylor T., Finch L.R., J. Bacteriology. 172 (1990) 7265-7268.

Google Scholar

[55] Ranjbar R., Aleo A., Giammanco G.M., Dionisi A.M., Sadeghifard N., Mammina C., BMC Infect Dis. 7 (2007) 62.

DOI: 10.1186/1471-2334-7-62

Google Scholar

[56] Rivera I.N.G., Chun J., Huq A., Sack R.B., Colwell R.R., Applied and Environmental Microbiology 67(6) (2001) 2421-2429.

DOI: 10.1128/aem.67.6.2421-2429.2001

Google Scholar

[57] Roussel Y., Pebay M., Guedon G., Simonet J.M., Decaris B., J. Bacteriology 176 (1994) 7413-7422.

DOI: 10.1128/jb.176.24.7413-7422.1994

Google Scholar

[58] Rowe-Magnus D.A., Mazel D., Int J Med Microbiol 292 (2002) 115-125

Google Scholar

[59] Salazar N.M., Caetano-Anolle ´s G., Nucleic Acids Res. 24 (1996) 5056-5057.

Google Scholar

[60] Schwartz D.C., Saffran W., Welsh J., Haas R., Goldenberg M., Cantor C.R., Cold Spring Harbor Symposia on Quantitative Biology, XLVII. (1982) 189-195.

DOI: 10.1101/sqb.1983.047.01.024

Google Scholar

[61] Shah D.H., Casavant C., Hawley Q., Addwebi T., Call D.R., Guard J., Foodborne Pathog Dis 9(3) (2012) 258-264.

Google Scholar

[62] Shere J.A., Bartlett K.J., Kaspar C.W., Appl. Environ. Microbiol. 64 (1998) 1390-1399

Google Scholar

[63] Singh D.V., Matte M.H., Matte G.R. Jiang S., Sabeena F., Shukla B.N., Sanyal S.C., Huq A., Colwell R.R., Applied and Environmental Microbiology 67 (2) (2001) 910-921.

DOI: 10.1128/aem.67.2.910-921.2001

Google Scholar

[64] Smith C.J., Coote J.G., Parton R.R., J. Gen. Microbiol. 1432 (1986) 2685-2692.

Google Scholar

[65] Smith C.L., Klco S.R., Cantor C.R., Washington D.C., IRL Press Oxford. (1988) 41-72.

Google Scholar

[66] Southern E.M., Anand R., Brown W.R., Fletcher D.S., Nucl. Acids Res. 15 (1987) 5925-5943.

Google Scholar

[67] Soyer Y., et al, J Clin Microbiol. 47 (2009) 3546-3556.

Google Scholar

[68] Steward G., Furst A., Avdalovic N., Biotechniques 6 (1988) 68-73.

Google Scholar

[69] Sukhnanand S., Alcaine S., Warnick L.D., Su W-L., Hof J., Craver M.P., McDonough P., Boor K.J., Wiedmann M., J Clin Microbiol. 43 (2005) 3688-3698.

DOI: 10.1128/jcm.43.8.3688-3698.2005

Google Scholar

[70] Swaminathan B., Barrett T.J., Hunter S.B., Tauxe R.V., Emerg Infect Dis.7 (2001) 382-389.

Google Scholar

[71] Talukder K.A., Khajanchi B.K., Islam M.A., Dutta D.K., Islam Z., Khan S.I., Nair G.B., Sack D.A., Epidemiol Infect 134 (2006) 1249-1256.

DOI: 10.1017/s0950268806006029

Google Scholar

[72] Tankouo-Sandjong B., Kinde H., Wallace I., FEMS Micro Let 331(2) (2012) 165-175

DOI: 10.1111/j.1574-6968.2012.02568.x

Google Scholar

[73] Teh C.S.J., Chua K.H., Thong K.L. Journal of Biomedicine and Biotechnology (2010) 1-7.

Google Scholar

[74] Ud-Din A.I.M.S., et al., PLoS ONE 8(12) (2013) e82601.

Google Scholar

[75] Vadivelu J., Iyer L., Kshatriya B.M., Puthucheary S.D., Epidemiology and Infection. 124(1) (2000) 25-30.

Google Scholar

[76] Vinas M.R., et al., PLoS Negl Trop Dis. 7(12) (2013) e2521.

Google Scholar

[77] Weissman J.B., Gangorosa E.J., Schmerler A., Marier R.L., Lewis J.N. Lancet 1 (1975) 88-90.

Google Scholar

[78] White P.A., McIver C.J., Rawlinson W.D., Antimicrob Agents Chemother 45 (2001) 2658-2661.

Google Scholar

[79] WHO, Geneva, Switzerland. (1987) 9-20.

Google Scholar

[80] Wise M.G., Siragusa G.R., Plumblee J., Healy M., Cray P.J., Seal B.S., J Microbiol Methods 76 (2009) 18-24.

DOI: 10.1016/j.mimet.2008.09.006

Google Scholar

[81] Xi M., Zheng J., Zhao S., Brown E.W., Meng J., J Food Prot 71 (2008) 2067-2072.

Google Scholar

[82] Zhao S., Mitchell S.E., Meng J., Kresovich S., Doyle M., Dean R.E., Casa A., Weller J., Microb Infect. 2 (2000)107-113.

Google Scholar

[83] Zheng J., Keys C.E., Zhao S., Meng J., Brown E.W., Emerg Infect Dis 13 (2007) 1932-1935.

Google Scholar

[84] Ziegler A., Vols A., Methods in Molecular Biology (1992) 63-72. ( Received 23 October 2014; accepted 31 October 2014 )

Google Scholar