Antimycotic Activity of Low Polar Petroleum Ether and Interpolar Methanolic Young Leaf Extracts of Solanum nigrum L.

Article Preview

Abstract:

Antimycotic activity of Petroleum ether and 98% methanolic young leaf soxhlet extract of Solanum nigrum (Solanaceae) was evaluated against dermatophytic fungi namely, Trichophyton rubrum, Trichophyton tonsurans, Trichophyton mentagrophytes, Microsporium gypseum, Candida albicans, and bacteria like, Staphylococcus aureus, Psudomonas aeruginosa, Bacillus subtilis, Escherichia coli. The maximum activity was observed in interpolar methanolic extract when compared to low polar petroleum ether extract. The minimum inhibitory concentration, minimum fungicidal concentration and minimum bactericidal concentration were determined against all the test strains. This study provides a basis for the isolation and purification of anti-dermatophytic compounds from the young leaves of S. nigrum.

Info:

Pages:

47-56

Citation:

Online since:

January 2015

Export:

Share:

Citation:

[1] A.V. Krishnaraju, T.V.N. Rao and Sundararaju, Assessment of bioactivity of Indian medicinal plants using Brine shrimp (Alternaria salania) lethality assay, Int. J. Appl. Sci Engg 2 (2005) 125-134.

Google Scholar

[2] M.F. Balandrin, A.J. Kjocke, Wurtele et al., Natural plant chemicals sources of industrial and mechanical materials, Science 228 (1985) 1154-160.

DOI: 10.1126/science.3890182

Google Scholar

[3] J.B. Suffrendini, H.S. Sader, A.G. Goncalves, A.O. Reis, H.L. Gales, A.D. Veralla and R.N. Younes, Screening of antimicrobial extract from plants native to the Brazilian Amazon rain forest and Atlantic forest, Brazil. J. med. Biol. Res 37 (2004) 379-384.

DOI: 10.1590/s0100-879x2004000300015

Google Scholar

[4] J.S. Evans, E. Pattison, and P. Morris, Antimicrobial agents from plant cell cultures, in Secondary metabolites in plant cell culture. Cambridge University, London (1986) P-12.

Google Scholar

[5] S.S. Purohit, and S.K. Mathur, Drugs in Biotechnology Fundamentals and applications. Purohit SS Maximillan publications, India (1999) 576.

Google Scholar

[6] S.K. Bhattacharjee, Handbook of Medicinal Plants, 3rd Ed. Pointer Pub. Jaipur (India) 2001.

Google Scholar

[7] A. Jamil, M. Shahid, M.M.H. Khan and M. Ashraf, Screening of some medicinal plants for isolation of antifungal proteins and peptides, Pakistan Journal of Botany 39(1) (2007) 211-221.

Google Scholar

[8] E. Sheeba, Antibacterial Activity of Solanum Surattense Burm. F, Journal of Science, Engineering and Technology 06(1) (2010) 1-4.

Google Scholar

[9] Miranda, Vegetacion Chipas. Chiapas, Mexico, Gobiernodel Estado 2 (1976) 47–50.

Google Scholar

[10] B. Berlin, E.A. Berlin, D.E. Breedlove, T. Duncan et al. La Herbolaria Medica Tzeltal-Tzotzil en los altos de Chiapas, Chicagas, Mexico, Gobiernodel Estado (1993) 154.

DOI: 10.4000/ethnoecologie.8436

Google Scholar

[11] J.W. Rippon, Medical Mycology, The Pathogenic Fungi and the Pathogen Antimycetes, 2nd ed. London, W.B. Saunders (1982)154–248.

Google Scholar

[12] G.E. Grabue, Treatment of oral Candida mucositis infections, Drugs (1994) 47, 734–740.

DOI: 10.2165/00003495-199447050-00003

Google Scholar

[13] J.M. Edmonds and J.A. Chweya, Black nightshades, Solanum nigrum L. and related 5 species, Inernational Plant Genetic Resources Institute (1997) 1st ed. 1:86.

Google Scholar

[14] T. Al-Qirim, M. Syed, S. Moyad, S. Ghassan and B. Naheed, Effect of Solanum nigrum on immobilization stress induced antioxidant defence changes in rat, Research journal of Biological Sciences (3) (2008) 1426–1429.

Google Scholar

[15] M. Jainu, C.S.S. Devi, Antiulcerogenic and ulcer healing effects of Solanum nigrum (L.) on experimental ulcer models: Possible mechanism for the inhibition of acid formation, Journal of Laboratory and Clinical Medicine 98 (2005) 417-27.

DOI: 10.1016/j.jep.2005.08.064

Google Scholar

[16] K.R. Kritikar and B.D. Basu, Indian Medicinal Plants, 2nd ed, Lalit Mohan Basu, Allahabad (1935) 457, 58.

Google Scholar

[17] T. Ikeda, H. Tsumagari and T. Nohara, Steroidal oligoglycosides from Solanum nigrum growing in Azerbaijan, Biologicheskie Nauki 3 (1992) 15–8.

Google Scholar

[18] J.M. Sashikumar, A. Remyam and K. Janardhanan, Antimicrobial activity of ethno medicinal plants of Nilgiri biosphere reserve and Western Ghats, Asian Journal of Microbiology Biotechnology and Environmental Science 5 (2003) 183-185.

Google Scholar

[19] P. Shivakumar Singh and G.M. Vidyasagar, Ethno medicinal plants used in the treatment of skin diseases in Hyderabad Karnataka region, Karnataka, India, Asian Pacific Journal of Tropical Biomedicine 3(11) (2013) 882-886.

DOI: 10.1016/s2221-1691(13)60173-2

Google Scholar

[20] S. Magaldi, S. Mata-Essayag, C. Hartung de Capriles, C. Perez, M.T. Colella, Carolina Olaizola and Yudith Ontiveros, Well diffusion for antifungal susceptibility testing, International Journal of Infectious Diseases 8 (2004) 39-45.

DOI: 10.1016/j.ijid.2003.03.002

Google Scholar

[21] National Committee for Clinical Laboratory Standards (NCCLS), Approved Standard M2-A6, 5th ed. NCCLS: Wayne, PA, (1997).

Google Scholar

[22] J.B. Horborne, Phytochemical Methods, A Guide to Modern Techniques of Plant Analysis 3rd Eds. Chapman and Hall. London, (1998).

Google Scholar

[23] M. Amir and S. Kumar, Possible Industrial application of genus Solanum in twenty first century- A review, Journal of Scientific and Industrial Research 63 (2004) 116-124.

Google Scholar

[24] D. Juneja, P.N. Shrivastava, M.K. Guha and R.C. Saxena, Phytochemical screening of some folklore medicinal plants for their anti-inflammatory activity, Pharmacognosy Magazine 11 (2007), (Suppl), Jul-Sept.

Google Scholar

[25] Sweta Prakash and K. Ashok Jain, Antifungal activity and preliminary phytochemical studies of leaf extract of Solanum nigrum Linn., J Pharm Pharm Sci 3(4) (2011) 352-355.

Google Scholar

[26] H. Tsuchiya, M. Sato, T. Miyazaki, S. Fujiwara, S. Tanigaki, M. Ohyama, T. Tanaka, M. Iinuma, Comparative study on the antibacterial activity of phytochemical flavanones against methicillinresistant Staphylococcus aureus, Journal of Ethnopharmacology 50 (1996) 27-34.

DOI: 10.1016/0378-8741(96)85514-0

Google Scholar

[27] T.L. Mason, B.P. Wasserman, Inactivation of red beet betaglucan synthase by native and oxidized phenolic compounds, Phytochemistry 26 (1987) 2197-2202.

DOI: 10.1016/s0031-9422(00)84683-x

Google Scholar

[28] C. Ya, S.H. Gaffney, T.H. Lilley, E. Haslam, Carbohydrate-polyphenol complexation, In: Hemingway, R.W. and Karchesy, J.J. (ed.). Chemistry and significance of condensed tannins, Plenum Press, New York (1988) 553.

DOI: 10.1007/978-1-4684-7511-1_19

Google Scholar

[29] M. Scortichini, M. Pia Rossi, Preliminary in vitro evaluation of the antimicrobial activity of terpenes and terpenoids towards Erwinia amylovora (Burrill) Winslow et al., Journal of Applied Bacteriology, 71 (1991) 109-112.

DOI: 10.1111/j.1365-2672.1991.tb02963.x

Google Scholar

[30] N. Goren, H. Woerdenbag, C. Bozok-Johansson, Cytotoxic and antibacterial activities of sesquiterpene lactones isolated from Tanacetum praeteritum subsp, praeteritum, Planta Medica 62 (1996) 419-422.

DOI: 10.1055/s-2006-957930

Google Scholar

[31] C.G. Barnabas, S. Nagarajan, Antimicrobial activity of flavonoids of some medicinal plants, Fitoterapian 3 (1988) 508-510.

Google Scholar

[32] Muhammad Zubaır, Komal Rızwan, Nasır Rasool, Nosheen Afshan, Muhammad Shahid, Antimicrobial potential of various extract and fractions of leaves of Solanum nigrum, International Journal of Phytomedicine 3 (2011) 63-67.

Google Scholar