Influence of Chromium Treatment on Growth and Nutrient Accumulation of Paddy (Oryza sativa L) Seedlings

Retracted:

Removed due to plagiarism

Article Preview

Abstract:

The aim of this research is to study accumulation of Chromium along with nutrients and its effect on the growth of Paddy plant (Oryza sativa.L). Thus, paddy seedlings grown in petriplates lined with filter paper undergoing, different treatments of Cr (0, 2.5, 5, 10, 25, 50, 75, 100 and 200 mg/L). After one week seedlings were removed and morphological parameters like root length, shoot length and dry weight of plants and accumulation of nutrients along with Cr content were determined. The results indicated that the concentrations more than 100 mg/L chromium cause the reduction of morphological parameters in the treatment plants rather than control plant and Cr addition in the cultures caused enhancement of chromium content paddy seedlings. Similarly nutrient accumulation also affected by increasing concentrations of chromium.

Info:

Pages:

7-13

Online since:

January 2015

Export:

Share:

Citation:

* - Corresponding Author

[1] Abbassi, S.S.; Abbassi, N. and Soni, R. (1998). Heavy metals in the environment, Mittal Publication, New Delhi, India.

Google Scholar

[2] Ali NA, Ater M.; Sunahara, Gl. and Robidoux, P.Y. (2004). Phytotoxicity and bioacuumulation of copper and chromium using barley (Hordeum Vulgare L.) in spiked artificial and natural forest soils. Ecotoxicology and environmental safety 57: 363-374.

DOI: 10.1016/s0147-6513(03)00074-5

Google Scholar

[3] Assche F. Van and H. Clijsters: Effects of metals on enzyme activity in plants. Plant Cell Environ., 13:195-206 (1990).

DOI: 10.1111/j.1365-3040.1990.tb01304.x

Google Scholar

[4] Bitell, J.E., D.E. Koeppe and R.J. Miller, 1974. Sorption of heavy metal cations by corn mitochondria and the effects on electron and energy transfer reactions. Physiol. Plantarum, 30: 226-230.

DOI: 10.1111/j.1399-3054.1974.tb03648.x

Google Scholar

[5] Black, C.A., 1965. In: Methods of Soil Analysis Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Inc., Madison, Wisconsin, p.242.

Google Scholar

[6] Cervantes, C.; Campos-Garcia, J.; Debars, S.; Gutierrez-Corona, F.; Loza-Tavera, H.; Carlos-Tarres-Guzman, M. and Moreno-Sanchez, R. (2001). Interaction of chromium with Microgenesis and plants. FEMS Microbiol. Rev., 25: 335-347.

DOI: 10.1111/j.1574-6976.2001.tb00581.x

Google Scholar

[7] Chatterjee, J. and Chatterjee, C. (2000). Phytoxicity of cobalt, chromium and copper in Cauliflower. Environ. Pollut., 109:69-74.

DOI: 10.1016/s0269-7491(99)00238-9

Google Scholar

[8] Dua, A. and S.K. Sawhney, 1991. Effect of chromium on activities of hydrolytic enzymes in germinating pea seeds. Environ. Exp. Bot., 31: 133-139.

DOI: 10.1016/0098-8472(91)90063-t

Google Scholar

[9] Dube, B.K.; Tewari, K.; Chatterjee, J. and Chaterejee, C. (2003). Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53: 1147-1153.

DOI: 10.1016/s0045-6535(03)00570-8

Google Scholar

[10] Jackson, M.L., 1958. Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi, pp.22-31

Google Scholar

[11] Krishnamurthy, S. and Wilkens, M.M. (1994). Environmental chemistry of Chromium. Northeasteren geology, 16: 14-17.

Google Scholar

[12] Lakshmi, S. and P. Sundaramoorthy, 2003. Effect of chromium on germination and biochemical changes in blackgram. J. Ecobiol., 15: 7-11.

Google Scholar

[13] Lalitha, K., N. Balasubramanian and S. Kalavathy, 1999. Studies of impact of chromium on Vigna unguiculata (L.) Walp. var. Long. J. Swamy Bot. Cl., 16: 17-20.

Google Scholar

[14] Lanoreaux, R.J.W.R. and S. Chaney, 1978. The effect of cadmium on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. Plant Physiol., 43: 231-236.

DOI: 10.1111/j.1399-3054.1978.tb02569.x

Google Scholar

[15] Pillay, A. E.; Williams, J. R.; EL Mardi, M. O.; AI-Lawati, S.M.H.; AI-Hadabbi, M. H. and AI-Hamdi, A.(2003). Risk assessment of chromium and arsenic in date palm leaves used as livestock feed. Environ. Intl., 1048:1-5.

DOI: 10.1016/s0160-4120(03)00011-4

Google Scholar

[16] Piper, C., 1966. Soil and plant analysis. Asian Hans Publishers, Bombay, pp.11-36.

Google Scholar

[17] Rai, U. N.; Tripathi, R. D. and Kumar, N. (1992). Bioaccumulation of chromium and toxicity on growth, photosynthetic pigments, photosynthesis, in vivo nitrate reductase activity and protein content in chlorococcalear green alga, Glaucocystis nostochinearum ltzigsohn. Chromosphere, 25:721-732.

DOI: 10.1016/0045-6535(92)90318-l

Google Scholar

[18] Rout, G.R., S. Samantary and P. Das, 1997. Differential chromium tolerance among eight mungbean cultivars grown in nutrient culture. J. Plant Nutr., 20: 473-483.

DOI: 10.1080/01904169709365268

Google Scholar

[19] Samantary, S. and B. Deo, 2004. Studies on chromium toxicity in mung bean (Vigna radiata L.). Adv. Plant Sci., 17: 189-194.

Google Scholar

[20] Sankar Ganesh, K., AL.A. Chidambaram, P. Sundaramoorthy, L. Baskaran and M. Selvaraj, 2006a. Influence of chromium and cadmium on germination, seedling growth and photosynthetic pigments of soybean (Glycine max L. Merr.). Indian J. Environ. Ecoplan., 12: 291-296.

Google Scholar

[21] Sankar Ganesh, K., L. Baskaran, S. Rajasekaran, K. Sumathi, AL.A. Chidambaram and P. Sundaramoorthy, 2008. Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloid. Surface. B, 63: 159-163.

DOI: 10.1016/j.colsurfb.2007.11.016

Google Scholar

[22] Sankar Ganesh, K., P. Sundaramoorthy and AL.A. Chidambaram, 2006b. Chromium toxicity effect on blackgram, soybean and paddy. Poll. Res., 25: 257-261.

Google Scholar

[23] Shanker, A.K., M. Djanaguiraman, R. Sudhagar, C.N. Chandrashekar and G. Pathmanabhan, 2004a. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in greengram (Vigna radiata (L.) R. Wilczek, cv. CO 4) roots. Plant Sci., 166: 1035-1043.

DOI: 10.1016/j.plantsci.2003.12.015

Google Scholar

[24] Sharma, D. C.; Chatterjee, C. and Sharma, C. P. (1995). Chromium accumulation by barley seedlings (Hordeum vulgare L,). Journal of experimental botany 25: 241-251.

Google Scholar

[25] Sharma, D.C. and Pant R. C. (1994). Chromium uptake its effects on certain plant nutrients in maize (Zea mays L. CV Ganga 5).Journal of environmental science and health, Part A , 29: 941-948

DOI: 10.1080/10934529409376085

Google Scholar

[26] Sidharthan, M. and A.S. Lakshmanachary, 1996. Efficacy of chromium on germination, growth and biochemical studies on Glycine max var. CO 1. In: Jha, P.K., G.P.S. Ghirmire, S.B. Kamacharya, S.R. Baral and P. Lacoul (eds.), Environment and Biodiversity, Ecological Society, Katmandu, Nepal, pp.326-328.

Google Scholar

[27] Subramani, A., P. Sundaramoorthy, S. Saravanan, M. Selvaraj and A.S. Lakshmanachary, 1999. Screening of groundnut cultivars for chromium sensitivity. Ecoprint, 6: 61-65.

Google Scholar

[28] Sundaramoorthy, P., K. Sankar Ganesh, L. Baskaran, K. Sumathi and S. Rajasekaran, 2006b. Germination behaviour of some agricultural crops under chromium treatment. Bull. Biol. Sci., 4: 99-101.

Google Scholar

[29] Sundaramoorthy, P., K. Sankar Ganesh, S. Rajasekaran, L. Baskaran and K. Sumathi, 2006a. Studies on the effect of chromium on germination and growth of soybean (Glycine max) cultivars. Bull. Agr. Sci., 4: 91-94.

Google Scholar

[30] Williams, C.H. and V. Twine, 1960. In: Peach, K. and M.V. Tracey (eds.), Modern Methods of Plant Analysis, Vol. 5, Springer Verlag, Berlin, pp.3-5.

Google Scholar

[31] Yoshida, S., D. Fordo, J. Cork and K. Gomez, 1972. Laboratory manual for physiological studies of rice, 3rd edn., The International Rice Research Institute, Philippines, pp.11-23.

Google Scholar

[32] Zayed A. M. and Terry N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and soil 249: 139-156.

Google Scholar

[33] Zayed, A.; Lytle C.M.; Qian, J.H. and Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops, Planta 206: 293-299.

DOI: 10.1007/s004250050403

Google Scholar