Optimum Plant Density of Okra and Intercropping Effects on Yields of Egusi Melon-Okra Mixture, at Makurdi, Nigeria

Article Preview

Abstract:

A field experiment was conducted from August to November, during the 2012 and 2013 cropping seasons at the Research Farm, University of Agriculture, Makurdi, Nigeria, to identify the optimum plant density of okra and intercropping effects on yields of egusi melon-okra mixture and to assess the yield advantages of the intercropping system. The experiment was a 3x3 split plot arrangement of treatments, fitted in a randomized complete block design (RCBD), replicated four times. The intercropping (sole egusi melon, sole okra and egusi melon-okra mixture) constituted the main plots, while the population densities of okra (33,000, 40,000 and 50,000 plants ha-1 equivalent) into egusi melon were allocated to the subplots. Results of study showed that to maximize intercrop yield of okra in an egusi melon-okra intercrop, the optimal population density of okra is 33,000 plants ha-1, while that of 40,000 plants ha-1 is optimal to maximize intercrop yield of egusi melon. Intercropping egusi melon and okra significantly (P≤0.05) reduced yields of egusi melon (37.5 % and 40.5 % respectively, in years 2012 and 2013) and that of okra (9.7 % and 16.9 % respectively, in years 2012 and 2013). The highest mean land equivalent ratio value of 1.57 and highest land equivalent coefficient values of 0.60 and 0.63 respectively, in years 2012 and 2013, were recorded for okra sown into egusi melon at the population density of 40,000 plants ha-1. It is most advantageous having both crops in intercrop when okra is sown into egusi melon at the population density of 40,000 plants ha-1. This should therefore be recommended for Makurdi location, Nigeria.

Info:

* - Corresponding Author

[1] Adetiloye P.O., Ezedinma F.O.C., Okigbo B.N., Ecological Modeling 19 (1983) 27-39.

Google Scholar

[2] Ayoola O.T., Makinde E.A., Tropical and Subtropical Agroecosystems 8 (3) (2008) 235-241.

Google Scholar

[3] Badifu G.I.O., Ogunsa A.O., Plant Foods and Human Nutrition 41 (1991) 35-44.

Google Scholar

[4] BOSADP (1998). Cropping recommendations. Borno State Agricultural Development Programme, Annual Report, Pp. 76.

Google Scholar

[5] Breda N.J., Journal of Experimental Botany 54 (2003) 2403-2417.

Google Scholar

[6] Brisibe E.A., Udensi O., Ntui V.O., Out P.A., Chukwurah P.N., African Journal of Plant Science 5(13) (2011) 759-766.

Google Scholar

[7] Burkil H.M. (1997). The useful plants of tropical West Africa. 43rd Ed., Royal botanical gardens, Kew, Pp. 166-179.

Google Scholar

[8] Christo E.I., Onuh M.O. (2005). Influence of plant spacing on the growth and yield of okra (Abelmoschus esculentus (L) Moench). Proceedings of the 39th conference of the Agricultural Society of Nigeria, Benin, 2005, pp.51-53.

Google Scholar

[9] Duthie J.A., Shrefler J.W., Roberts B.W., Edelson J.V., Crop Science Journal 39 (1999) 406- 412.

Google Scholar

[10] Ekpete D.M., Nigerian Agricultural Journal 13 (2000) 96-102.

Google Scholar

[11] Enwezor W.O.E., Udo J., Ajotade K.A. (1989). Fertilizer procurement and distribution, fertilizer use and management practice for crops in Nigeria. Savenda Publishers, Nsukka, Nigeria, pp.25-28.

Google Scholar

[12] Ibeawuchi I.K., Nature and Science 5(1) (2007) 46-49.

Google Scholar

[13] Ijoyah M.O., Alexander A., Fanen F.T., Agriculture and Biology Journal of Northern America (6) (2012) 1328-1332.

Google Scholar

[14] Ijoyah M.O., Atanu S.O., Ojo S., Journal of Applied Biosciences 32 (2010) 2015-2019.

Google Scholar

[15] Katung M.D., Kachina B.D. (2005). Time of partial defoliation and GA3 effects on growth indices and yield of okra (Abelmoschus esculentus (L.) Moench) . Proceeding of the 39th conference of the Agricultural Society of Nigeria, Benin, 2005, pp.210-213.

Google Scholar

[16] Madu F.O., Nwosu S.K. (2001). Effect of fertilizer and time of interplanting maize on the performance of yam-maize intercrop. Proceedings of the 2nd annual farming systems research and extension workshop in Southern Eastern Nigeria, Umudike, January 10-14, pp.27-30.

Google Scholar

[17] Majnoun H.N., Ellis R.H., Yazdi-Samadi B., Journal of Science and Technology 3 (2001)131-139.

Google Scholar

[18] McGilchrist C.A., Biometrics 27 (1971) 659-671.

Google Scholar

[19] Muoneke C.O., Ogwuche M.A.O., Kalu B.A., African Journal of Agricultural Research 2(12) (2007) 667-677.

Google Scholar

[20] Ogbonna P.E., Obi I.U. (2010). Aspects of reproductive character of egusi melon. Proceedings of the 34th annual conference of genetics society of Nigeria, 22-27.

Google Scholar

[21] Okaka V.B., Remison S.U., Nigeria Agricultural Journal 30 (1999) 49-58.

Google Scholar

[22] Olufajo O.O., Tropical Oil Seeds Journal 1 (1992) 27-33.

Google Scholar

[23] Silwana T.T., Lucas E.O., Journal of Agricultural Science 138 (2002) 193-200.

Google Scholar

[24] Steel G.O., Torrie J.H. (1980). Principles and procedures of statistics. A biometrical approach. 2nd edition, McGraw-Hill Book International Company, New York, Pp. 633.

Google Scholar

[25] Tindal H.D. (1986). Vegetables in the tropics. 1st edition, Macmillan Publishers, Hong Kong, pp.325-327.

Google Scholar

[26] Usman S.D., Seed Research 29(1) (2001) 47-51.

Google Scholar

[27] Willey R.W., Experimental Agriculture 21 (1985) 119-133.

Google Scholar

[28] Willey R.W., Rao M.R., Experimental Agriculture 16 (1980) 117-125.

Google Scholar

[29] Yadev S.K., Dhanker B.S., Vegetable Science 27 (2002) 70-74.

Google Scholar