Influence on Different Types of Mycorrhizal Fungi on Crop Productivity in Ecosystem

Article Preview

Abstract:

Mycorrhizal fungi greatly enhanced the ability of plants to take up phosphorus and other nutrients those are relatively immobile and exist in low concentration in the soil solution. Fungi can be important in the uptake of other nutrients by the host plant. Mycorrhizae establish symbiotic relationships with plants and play an essential role in plant growth, disease protection, and overall soil quality. Of the seven types of mycorrhizae described in current scientific literature (arbuscular, ecto, ectendo, arbutoid, monotropoid, ericoid and orchidaceous mycorrhizae), the arbuscular and ectomycorrhizae are the most abundant and widespread. This chapter presents an overview of current knowledge of mycorrhizal interactions, processes, and potential benefits to society. The molecular basis of nutrient exchange between arbuscular mycorrhizal (AM) fungi and host plants is presented; the role of AM fungi in disease protection, alleviation of heavy metal stress and increasing grain production. Most land plants form associations with mycorrhizal fungi. Mycorrhizas are mutualistic associations between fungi and plant roots. They are described as symbiotic because the fungus receives photo synthetically derived carbon compounds and the plant has increased access to mineral nutrients and sometimes water.

Info:

Pages:

9-15

Citation:

Online since:

May 2015

Export:

Share:

Citation:

* - Corresponding Author

[1] Al-Karaki, McMichael G,Zak B. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14: 263–269 (2004).

DOI: 10.1007/s00572-003-0265-2

Google Scholar

[2] Antunes, P.M., de Varennes, A., Zhang, T., and Goss, M.J., 2006, the tripartite symbiosis formed by indigenous arbuscular mycorrhizal fungi, Bradyrhizobium japonicum and soya bean under field conditions. J. Agr. Crop Sci. 192: 373–378.

DOI: 10.1111/j.1439-037x.2006.00223.x

Google Scholar

[3] Bago, B. 2000. Putative sites for nutrient uptake in arbuscular mycorrhizal fungi. Plant and Soil 226: 263-274.

Google Scholar

[4] Barea, J.M., Azcón, R., and Azcón-Aguilar, C., 2002, Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81: 343–351.

DOI: 10.1023/a:1020588701325

Google Scholar

[5] Blaha G, Stelzl U, Spahn CMT, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Meth Enzymol 317:292–309.

DOI: 10.1016/s0076-6879(00)17021-1

Google Scholar

[6] Bucher, M., 2007, Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173: 11–26.

DOI: 10.1111/j.1469-8137.2006.01935.x

Google Scholar

[7] Budi, S.W., van Tuinen, D., Martinotti, G., and Gianinazzi, S., 1999, Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl. Environ. Microbiol. 65: 5148–5150.

DOI: 10.1128/aem.65.11.5148-5150.1999

Google Scholar

[8] Burke, S.C., Angle, J.S., Chaney, R.L., and Cunningham, S.D., 2000, Arbuscular mycorrhizae effects on heavy metal uptake by corn. Intern. J. Phytorem. 2: 23–29.

DOI: 10.1080/15226510008500028

Google Scholar

[9] Calvet, C., Barea, J.M., and Pera, J., 1992, In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol. Biochem. 24: 775–780.

DOI: 10.1016/0038-0717(92)90252-s

Google Scholar

[10] Chalot, M., and A. Brun. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews 22: 21-44.

DOI: 10.1111/j.1574-6976.1998.tb00359.x

Google Scholar

[11] Clark, R.B., and S.K. Zeto. 2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23: 867-902.

DOI: 10.1080/01904160009382068

Google Scholar

[12] Daeia G, Ardekania M R,.Rejalic F, Teimurib S, Miransarid M. Alleviation of salinity stress on wheat yield, yield components and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physio 166 : 617-625 (2009).

DOI: 10.1016/j.jplph.2008.09.013

Google Scholar

[13] de Varennes, A., and Goss, M.J., 2007, The tripartite symbiosis between legumes, rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil. Soil Biol. Biochem. 39: 2603–2607.

DOI: 10.1016/j.soilbio.2007.05.007

Google Scholar

[14] Dell, B., N. Malajczuk, W. Dunstan, M.Q. Gong, Y.L. Chen, S. Lumyong, P. Lumyong, Supriyanto, and L. Ekwey. 2000. Edible forest fungi in SE Asia – Current practices and future management. Proceedings of International Workshop BIOREFOR, Nepal, 1999. pp.123-130.

Google Scholar

[15] Elsen, A., Declerck, S., and De Waele, D., 2001, Effects of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11: 49–51.

DOI: 10.1007/s005720100100

Google Scholar

[16] Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigat ion of ionic imbalance in NaCl-stressed Trigonellafoenum-graecum. Mycorrhiza 22:203–217.

DOI: 10.1007/s00572-011-0392-0

Google Scholar

[17] Filion, M., St-Arnaud, M., and Fortin, J.A., 1999, Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol. 141: 525–533.

DOI: 10.1046/j.1469-8137.1999.00366.x

Google Scholar

[18] Gadd, G.M., 2005, Microorganisms in toxic metal-polluted soils, p.325–356. In F. Buscot and A. Varma (Eds.), Microorganisms in soils: Roles in genesis and functions. Part V. Book series: Soil biology, Vol. 3. Springer, Berlin/Heidelberg, Germany.

DOI: 10.1007/3-540-26609-7_16

Google Scholar

[19] Galvez L, Douds D D, Drinkwater Le and Wagoner P. Effect of tillage and farming system upon VAM fungus populations and mycorrhizas and nutrient uptake of maize Plant and Soil 228: 299–308 (2001).

DOI: 10.1023/a:1004810116854

Google Scholar

[20] Göhre, V., and Paszkowski, U., 2006, Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223: 1115–1122.

DOI: 10.1007/s00425-006-0225-0

Google Scholar

[21] Goss, M.J., and de Varennes, A., 2002, Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol. Biochem. 34: 1167–1173.

DOI: 10.1016/s0038-0717(02)00053-6

Google Scholar

[22] Gryndler, M., Vosatka, M., Hrselova, H., Catska, V., Chvatalova, I., and Jansa, J., 2002, Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J. Plant Nutr. 25: 1341–1358.

DOI: 10.1081/pln-120004393

Google Scholar

[23] Hawkins, H.J., Johansen, A., and George, E., 2000, Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226: 275–285.

Google Scholar

[24] Joner, E.J., Briones, R., and Leyval, C., 2000, Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226: 227–234.

Google Scholar

[25] Koide, R.T., and Kabir, Z., 2000, extra radical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 148: 511–517.

DOI: 10.1046/j.1469-8137.2000.00776.x

Google Scholar

[26] Leyval, C., and Joner, E.J., 2001, Bioavailability of heavy metals in the mycorrhizosphere, p.165–185. In G.R. Gobran, W.W. Wenzel, and E. Lombi (Eds.), Trace elements in the rhizosphere. CRC, Boca Raton, FL.

DOI: 10.1201/9781420039993.ch8

Google Scholar

[27] Maathuis FJM (2009) Physiological functions of mineral macro nutrients. Curr Opin Plant Biol 12:250–258.

Google Scholar

[28] Marschner, P., Jentschke, G., and Godbold, D.L., 1998, Cation exchange capacity and lead sorption in ectomycorrhizal fungi. Plant Soil 205: 93–98.

DOI: 10.1023/a:1004376727051

Google Scholar

[29] Marschner, H., and B. Dell. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159: 89-102.

DOI: 10.1007/bf00000098

Google Scholar

[30] Meyer, J.R., and Linderman, R.G., 1986a, Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18: 185–190.

DOI: 10.1016/0038-0717(86)90025-8

Google Scholar

[31] Meyer, J.R., and Linderman, R.G., 1986b, Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol. Biochem. 18: 191–196.

DOI: 10.1016/0038-0717(86)90026-x

Google Scholar

[32] Martin, F., Perotto, S., and Bonfante, P., 2007, Mycorrhizal fungi: A fungal community at the interface between soil and roots, p.201–236. In R. Pinton, Z. Varanini, and P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York.

DOI: 10.1201/9781420005585.ch8

Google Scholar

[33] Patra P, Pati BK, Ghosh GK, Mura SS, Saha A. Effect of Bio-fertilizers and Sulphur on Growth, Yield, and Oil Content of Hybrid Sunflower (Helianthus annuus. L) In a Typical Lateritic Soil. 2: 603 doi: 10.4172/scientific reports.603 (2013).

DOI: 10.4172/scientificreports.603

Google Scholar

[34] Paulitz, T.C., and Linderman, R.G., 1989, Interactions between fluorescent pseudomonades Plant Pathol. 49: 509–514.

Google Scholar

[35] Powell, J.R., Gulden, R.H., Hart, M.M., Campbell, R.G., Levy-Booth, D.J., Dunfield, K.E., Pauls, K.P., Swanton, C.J., Trevors, J.T., and Klironomos, J.N., 2007, Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans. Appl. Environ. Microbiol. 73: 4365–4367.

DOI: 10.1128/aem.00594-07

Google Scholar

[36] Rillig, M.C., Lutgen, E.R., Ramsey, P.W., Klironomos, J.N., and Gannon, J.E., 2005, Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiol. 49: 251–259.

DOI: 10.1016/j.pedobi.2004.11.003

Google Scholar

[37] Rousseau, A., Benhamou, N., Chet, I., and Piché, Y., 1996, Mycoparasitism of the extrametrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86: 434–443.

DOI: 10.1094/phyto-86-434

Google Scholar

[38] St-Arnaud, M., and Elsen, A., 2005. Interaction or arbuscular-mycorrhizal fungi with soil-borne pathogens and non-pathogenic rhizosphere micro-organisms. In: In vitro culture of mycorrhizas, S. Declerck, D.-G. Strullu and J. A. Fortin eds., Springer, Berlin/Heidelberg, Germany, p.217–231.

DOI: 10.1007/3-540-27331-x_12

Google Scholar

[39] St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., and Fortin, J.A., 1995, Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5: 431–438.

DOI: 10.1007/bf00213444

Google Scholar

[40] Supriyanto and L. Ekwey. 2000. Edible forest fungi in SE Asia – Current practices and future management. Proceedings of International Workshop BIOREFOR, Nepal, 1999. pp.123-130.

Google Scholar

[41] Talavera, M., Itou, K., and Mizukubo, T., 2001, Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidognidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl. Entomol. Zool. 36: 387–392.

DOI: 10.1303/aez.2001.387

Google Scholar

[42] Vigo, C., Norman, J.R., and Hooker, J.E., 2000, Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49: 509–514.

DOI: 10.1046/j.1365-3059.2000.00473.x

Google Scholar