[1]
Abbasi, A.R., R. Sarvestani, B. Mohammadi, A. Baghery, Drought stress-induced changes at physiological and biochemical levels in some common vetch (Vicia sativa L.) genotypes, J. Agric. Sci. Tech., 16 (2014) 505-516.
Google Scholar
[2]
Alaei, Y., The effect of amino acids on leaf chlorophyll content in bread wheat genotypes under drought stress conditions, Middle-East J. Sci. Res. 10 (2011) 99-101.
Google Scholar
[3]
Alcázar, R., J. Planas, T. Saxena, X. Zarza, C. Bortolotti, J. Cuevas, M. Bitrián, F. Antonio, A. F. Tiburcio, T. Altabella, Putrescine accumulation confers drought tolerance in transgenic arabidopsis plants over-expressing the homologous arginine decarboxylase gene, Plant Physiol. Bioch. 48 (2010) 547-552.
DOI: 10.1016/j.plaphy.2010.02.002
Google Scholar
[4]
Anjum, S.A., X. Xie, L. Wang, M.F. Saleem, C. Man, W. Lei, Morphological, physiological and biochemical responses of plants to drought stress, Afr. J. Agric. Res. 6 (2011) 2026-2032.
Google Scholar
[5]
Baroowa, B., N. Gogoi, Effect of induced drought on different growth and biochemical attributes of black gram (VignamungoL.) and green gram (Vigna radiate L.), J. Environ. Res. Develop. 6 (2012) 584-593.
DOI: 10.56431/p-24wq2e
Google Scholar
[6]
Bartels, D., R. Sunker, Drought and salt tolerance in plants. Crit. Rev. in Plant Sci. 24 (2005) 23-58.
Google Scholar
[7]
Bates, L.S., R.P. Waldren, I.D. Teare, Rapid determination of free proline for water-stress studies, Plant Soil 39 (1973) 205- 207.
DOI: 10.1007/bf00018060
Google Scholar
[8]
Castaneda-Saucedo, M.C., L. Crdova-Tellez, V.A. Gonzalez-Hernandez, A. Delgado-Alvarado, A. Santacruz-Varelaand, G. Garcia-de los Santos, Physiological performance, yield, and quality of dry bean seeds under drought stress, Interciencia 34 (2009) 748-754.
Google Scholar
[9]
Cha-Um, S., C. Kirdmanee, Effect of osmotic stress on proline accumulation, photosynthetic abilities and growth of sugarcane plantlets (Saccharum officinarum L.), Pak. J. Bot. 40 (2008) 2541-2552.
DOI: 10.1016/s1671-2927(09)60008-0
Google Scholar
[10]
Chutipaijit, S., S. Cha-um, K. Sompornpailin, Influence of drought stress on proline and anthocyanin accumulations in indica rice cultivars, KMITL Sci. J. 8 (2008) 40-47.
DOI: 10.1016/j.jbiotec.2008.07.325
Google Scholar
[11]
Dalirie, M.S., R.S. Sharifi, S. Farzaneh, Evaluation of yield, dry matter accumulation and leaf area index in wheat genotypes as affected by terminal drought stress, Not. Bot. Horti. Agrobo. 38 (2010) 182-186.
Google Scholar
[12]
Dos Santos, M.G., R.V. Ribeiro, R.F. de Oliveira, C. Pimentel, Gas exchange and yield response to foliar phosphorus application in Phaseolus vulgaris L. under drought, Braz. J. Plant Physiol. 16 (2004) 171-179.
DOI: 10.1590/s1677-04202004000300007
Google Scholar
[13]
Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, S.M.A. Basra, Plant drought stress: effects, mechanisms and management, Agron. Sustain. Dev. 29 (2009) 185–212.
DOI: 10.1051/agro:2008021
Google Scholar
[14]
Fresneau, C., J. Ghashghaie, G. Cornic, Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): Role of leaf internal CO2, J. Exp. Bot. 10 (2007) 1-10.
DOI: 10.1093/jxb/erm150
Google Scholar
[15]
Ghaderi, N., S. Normohammadi, T. Javadi, Morpho-physiological responses of strawberry (fragaria×ananassa) to exogenous salicylic acid application under drought stress, J. Agric. Sci. Tech. 17 (2015) 167-178.
Google Scholar
[16]
Ghanbari, A.A., M.R. Shakiba, M. Toorchi, R. Choukan, Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and chitti beans (Phaseolus vulgaris) under water deficit conditions, Aust. J. Crop Sci. 7 (2013) 706-712.
Google Scholar
[17]
Hussain, M., M.A. Malik, M. Farooq, M.Y. Ashraf, M.A. Cheema, Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower, J. Agron. Crop Sci. 194 (2008) 193-199.
DOI: 10.1111/j.1439-037x.2008.00305.x
Google Scholar
[18]
Jaafar, H.Z., M.H. Ibrahim, N.F. Mohamad Fakri, Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of malaysian kacip fatimah (Labisia pumila Benth). Molecules 17 (2012) 7305-7322.
DOI: 10.3390/molecules17067305
Google Scholar
[19]
Jordan, B.R., P.E. James, A. Strid, R.G. Anthony, The effect of ultraviolet-b radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B induced changes are gene-specific and dependent upon the development stage, Plant Cell Environ. 17 (1994) 45–54.
DOI: 10.1111/j.1365-3040.1994.tb00264.x
Google Scholar
[20]
Karuppanapandian, T., T. Karuppudurai, P.B. Sinha, A.H. Haniya, K. Manoharan, Genetic diversity in green gram [Vigna radiata (L.)] landraces analyzed by using random amplified polymorphic DNA (RAPD), Afr. J. Biotechnol. 5 (2006) 1214-1219.
Google Scholar
[21]
Kelly, J.D., P. Ramirez-Vallejo, Traits related to drought resistance in common bean. Euphytica 99 (1998) 43-50.
Google Scholar
[22]
Kuznetsov, V., N. Shevyakova, Proline under stress: biological role, metabolism and regulation, Russ. J. Plant Physiol. 46 (1999) 274-286.
Google Scholar
[23]
Liu, C., Y. Liu, K. Guo, D. Fan, G. Li, Y. Zheng, L. Yu, R. Yang, Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China, Environ. Exp. Bot. 71 (2011) 174–183.
DOI: 10.1016/j.envexpbot.2010.11.012
Google Scholar
[24]
Lopez, F.B., Y.S. Chauhan, C. Johansen, Effects of timing of drought stress on leaf area development and canopy light interception of short‐duration pigeonpea, J. Agron. Crop Sci. 178 (1997) 1-7.
DOI: 10.1111/j.1439-037x.1997.tb00344.x
Google Scholar
[25]
Manivannan, P., C.A. Jaleel, B. Sankar, A. Kishorekumar, R. Somasundaram, G.M. Alagu Lakshmanan, R. Panneerselvam, Growth, biochemical modifications and proline metabolism in Helianthus Annuus L. as induced by drought stress, Colloids Surf. B: Biointerf. 59 (2007) 141–149.
DOI: 10.1016/j.colsurfb.2007.05.002
Google Scholar
[26]
Martinez-Ballesta, M.C., R. Dominguez-Perles, D.A. Moreno, B. Muries, C. Alcaraz-Lopez, E. Bastias, C. Garcia-Viguera, M. Carvajal, Minerals in plant food: effect of agricultural practices and role in human health, A Review. Agron. Sustain. Dev. 30 (2010) 295-309.
DOI: 10.1051/agro/2009022
Google Scholar
[27]
Mierziak, J., K. Kostyn, A. Kulma, Flavonoids as important molecules of plant interactions with the environment, Molecules 19 (2014) 16240-16265.
DOI: 10.3390/molecules191016240
Google Scholar
[28]
Mitchell, J.H., D. Siamhan, M.H. Wamala, J.B. Risimeri, E. Chinyamakobvu, S.A. Henderson, S. Fukai, The use of seedling leaf death scores for evaluation of drought resistance of rice, Field Crops Res. 55 (1998)129-139.
DOI: 10.1016/s0378-4290(97)00074-9
Google Scholar
[29]
Mohammadkhani, N., R. Heidari, Drought-induced accumulation of soluble sugars and proline in two maize varieties, World Appl. Sci. J. 3 (2008): 448-453.
Google Scholar
[30]
Moosavi, S.G., The effect of water deficit stress and nitrogen fertilizer levels on morphology traits, yield and leaf area index in maize, Pak. J. Bot. 44 (2012) 1351-1355.
Google Scholar
[31]
Muchow, R.C., Canopy development in grain legumes grown under DiHerenl soil water regimes in a semi-arid tropical environment, Field Crops Res. 11 (1985) 99 -109.
DOI: 10.1016/0378-4290(85)90094-2
Google Scholar
[32]
Nawaz, F., M.Y. Ashraf, R. Ahmad, E.A. Waraich, Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions, Biol. Trace Elem. Research 151 (2013) 284-293.
DOI: 10.1007/s12011-012-9556-9
Google Scholar
[33]
Riaz, A.T.I.F., A. Younis, A.R. Taj, A. Karim, U. Tariq, S. Munir, S.I.T.W.A.T. Riaz, Effect of drought stress on growth and flowering of marigold (Tagetes erecta L.), Pak. J. Bot. 45 (2013) 123-131.
Google Scholar
[34]
Riccardi, F., P. Gazeau, D. de Vienne, M. Zivy, Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification, Plant Physiol. 117 (1998) 1253-1263.
DOI: 10.1104/pp.117.4.1253
Google Scholar
[35]
Serraj, R., T. R. Sinclair, N2 fixation response to drought in common bean (Phaseolus vulgaris L.), Ann. Bot. 82 (1998) 229-234.
DOI: 10.1006/anbo.1998.0670
Google Scholar
[36]
Siddique, M.R.B, A. Hamid, M.S. Islam, Drought stress effects on water relations of wheat, Bot. Bull. Acad. Sinica. 41 (2000) 35-39.
Google Scholar
[37]
Singh, S., A.K. Gupta, N. Kaur, Differential responses of antioxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance, J. Agron. Crop Sci. 198 (2012) 185-195.
DOI: 10.1111/j.1439-037x.2011.00497.x
Google Scholar
[38]
Singh S.P., Drought resistance in the race Durango dry bean landraces and cultivars, Agron. J. 99 (2007) 1219-1225.
DOI: 10.2134/agronj2006.0301
Google Scholar
[39]
Yagoob, H., M. Yagoob, The effects of water deficit stress on protein yield of mung bean genotypes, Peak J. Agric. Sci. 2 (2014) 30-35.
Google Scholar