Changes in Plant Water Status, Biochemical Attributes and Seed Quality of Black Gram and Green Gram Genotypes under Drought

Article Preview

Abstract:

Drought is one of the major abiotic stresses which adversely affect crop growth and production worldwide as water is vital for every aspect of plant growth and development. The present experiment was carried out during the growing seasons (September – December) of 2012 and 2013 to evaluate the response of black gram (Vigna mungo L.) and green gram (Vigna radiata L.) in terms of some important growth indices, biochemical traits and seed quality under drought stress. Four commonly grown genotypes - T9, KU 301(black gram) and Pratap, SG 21-5 (green gram) of Assam, India were grown in a randomized block design with three replications under stress and non-stress conditions. Stress was applied by withholding irrigation for fifteen consecutive days at vegetative, flowering and pod filling stages. Leaf area index (LAI), seed protein content and protein yield significantly decreased (p ≤ 0.01) whereas proline, total flavonoids and anthocyanin content increased significantly (p ≤ 0.01) in response to water deficiency. Among the studied genotypes, T9 and Pratap showed better tolerance capacity towards the applied drought by presenting higher values of LAI, plant height stress tolerance index (PHSI), dry matter stress tolerance index (DMSI), proline, total flavonoids, anthocyanin, lower percentage of chlorophyll degradation and finally producing high quality seeds.

Info:

* - Corresponding Author

[1] Abbasi, A.R., R. Sarvestani, B. Mohammadi, A. Baghery, Drought stress-induced changes at physiological and biochemical levels in some common vetch (Vicia sativa L.) genotypes, J. Agric. Sci. Tech., 16 (2014) 505-516.

Google Scholar

[2] Alaei, Y., The effect of amino acids on leaf chlorophyll content in bread wheat genotypes under drought stress conditions, Middle-East J. Sci. Res. 10 (2011) 99-101.

Google Scholar

[3] Alcázar, R., J. Planas, T. Saxena, X. Zarza, C. Bortolotti, J. Cuevas, M. Bitrián, F. Antonio, A. F. Tiburcio, T. Altabella, Putrescine accumulation confers drought tolerance in transgenic arabidopsis plants over-expressing the homologous arginine decarboxylase gene, Plant Physiol. Bioch. 48 (2010) 547-552.

DOI: 10.1016/j.plaphy.2010.02.002

Google Scholar

[4] Anjum, S.A., X. Xie, L. Wang, M.F. Saleem, C. Man, W. Lei, Morphological, physiological and biochemical responses of plants to drought stress, Afr. J. Agric. Res. 6 (2011) 2026-2032.

Google Scholar

[5] Baroowa, B., N. Gogoi, Effect of induced drought on different growth and biochemical attributes of black gram (VignamungoL.) and green gram (Vigna radiate L.), J. Environ. Res. Develop. 6 (2012) 584-593.

DOI: 10.56431/p-24wq2e

Google Scholar

[6] Bartels, D., R. Sunker, Drought and salt tolerance in plants. Crit. Rev. in Plant Sci. 24 (2005) 23-58.

Google Scholar

[7] Bates, L.S., R.P. Waldren, I.D. Teare, Rapid determination of free proline for water-stress studies, Plant Soil 39 (1973) 205- 207.

DOI: 10.1007/bf00018060

Google Scholar

[8] Castaneda-Saucedo, M.C., L. Crdova-Tellez, V.A. Gonzalez-Hernandez, A. Delgado-Alvarado, A. Santacruz-Varelaand, G. Garcia-de los Santos, Physiological performance, yield, and quality of dry bean seeds under drought stress, Interciencia 34 (2009) 748-754.

Google Scholar

[9] Cha-Um, S., C. Kirdmanee, Effect of osmotic stress on proline accumulation, photosynthetic abilities and growth of sugarcane plantlets (Saccharum officinarum L.), Pak. J. Bot. 40 (2008) 2541-2552.

DOI: 10.1016/s1671-2927(09)60008-0

Google Scholar

[10] Chutipaijit, S., S. Cha-um, K. Sompornpailin, Influence of drought stress on proline and anthocyanin accumulations in indica rice cultivars, KMITL Sci. J. 8 (2008) 40-47.

DOI: 10.1016/j.jbiotec.2008.07.325

Google Scholar

[11] Dalirie, M.S., R.S. Sharifi, S. Farzaneh, Evaluation of yield, dry matter accumulation and leaf area index in wheat genotypes as affected by terminal drought stress, Not. Bot. Horti. Agrobo. 38 (2010) 182-186.

Google Scholar

[12] Dos Santos, M.G., R.V. Ribeiro, R.F. de Oliveira, C. Pimentel, Gas exchange and yield response to foliar phosphorus application in Phaseolus vulgaris L. under drought, Braz. J. Plant Physiol. 16 (2004) 171-179.

DOI: 10.1590/s1677-04202004000300007

Google Scholar

[13] Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, S.M.A. Basra, Plant drought stress: effects, mechanisms and management, Agron. Sustain. Dev. 29 (2009) 185–212.

DOI: 10.1051/agro:2008021

Google Scholar

[14] Fresneau, C., J. Ghashghaie, G. Cornic, Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): Role of leaf internal CO2, J. Exp. Bot. 10 (2007) 1-10.

DOI: 10.1093/jxb/erm150

Google Scholar

[15] Ghaderi, N., S. Normohammadi, T. Javadi, Morpho-physiological responses of strawberry (fragaria×ananassa) to exogenous salicylic acid application under drought stress, J. Agric. Sci. Tech. 17 (2015) 167-178.

Google Scholar

[16] Ghanbari, A.A., M.R. Shakiba, M. Toorchi, R. Choukan, Nitrogen changes in the leaves and accumulation of some minerals in the seeds of red, white and chitti beans (Phaseolus vulgaris) under water deficit conditions, Aust. J. Crop Sci. 7 (2013) 706-712.

Google Scholar

[17] Hussain, M., M.A. Malik, M. Farooq, M.Y. Ashraf, M.A. Cheema, Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower, J. Agron. Crop Sci. 194 (2008) 193-199.

DOI: 10.1111/j.1439-037x.2008.00305.x

Google Scholar

[18] Jaafar, H.Z., M.H. Ibrahim, N.F. Mohamad Fakri, Impact of soil field water capacity on secondary metabolites, phenylalanine ammonia-lyase (PAL), maliondialdehyde (MDA) and photosynthetic responses of malaysian kacip fatimah (Labisia pumila Benth). Molecules 17 (2012) 7305-7322.

DOI: 10.3390/molecules17067305

Google Scholar

[19] Jordan, B.R., P.E. James, A. Strid, R.G. Anthony, The effect of ultraviolet-b radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B induced changes are gene-specific and dependent upon the development stage, Plant Cell Environ. 17 (1994) 45–54.

DOI: 10.1111/j.1365-3040.1994.tb00264.x

Google Scholar

[20] Karuppanapandian, T., T. Karuppudurai, P.B. Sinha, A.H. Haniya, K. Manoharan, Genetic diversity in green gram [Vigna radiata (L.)] landraces analyzed by using random amplified polymorphic DNA (RAPD), Afr. J. Biotechnol. 5 (2006) 1214-1219.

Google Scholar

[21] Kelly, J.D., P. Ramirez-Vallejo, Traits related to drought resistance in common bean. Euphytica 99 (1998) 43-50.

Google Scholar

[22] Kuznetsov, V., N. Shevyakova, Proline under stress: biological role, metabolism and regulation, Russ. J. Plant Physiol. 46 (1999) 274-286.

Google Scholar

[23] Liu, C., Y. Liu, K. Guo, D. Fan, G. Li, Y. Zheng, L. Yu, R. Yang, Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China, Environ. Exp. Bot. 71 (2011) 174–183.

DOI: 10.1016/j.envexpbot.2010.11.012

Google Scholar

[24] Lopez, F.B., Y.S. Chauhan, C. Johansen, Effects of timing of drought stress on leaf area development and canopy light interception of short‐duration pigeonpea, J. Agron. Crop Sci. 178 (1997) 1-7.

DOI: 10.1111/j.1439-037x.1997.tb00344.x

Google Scholar

[25] Manivannan, P., C.A. Jaleel, B. Sankar, A. Kishorekumar, R. Somasundaram, G.M. Alagu Lakshmanan, R. Panneerselvam, Growth, biochemical modifications and proline metabolism in Helianthus Annuus L. as induced by drought stress, Colloids Surf. B: Biointerf. 59 (2007) 141–149.

DOI: 10.1016/j.colsurfb.2007.05.002

Google Scholar

[26] Martinez-Ballesta, M.C., R. Dominguez-Perles, D.A. Moreno, B. Muries, C. Alcaraz-Lopez, E. Bastias, C. Garcia-Viguera, M. Carvajal, Minerals in plant food: effect of agricultural practices and role in human health, A Review. Agron. Sustain. Dev. 30 (2010) 295-309.

DOI: 10.1051/agro/2009022

Google Scholar

[27] Mierziak, J., K. Kostyn, A. Kulma, Flavonoids as important molecules of plant interactions with the environment, Molecules 19 (2014) 16240-16265.

DOI: 10.3390/molecules191016240

Google Scholar

[28] Mitchell, J.H., D. Siamhan, M.H. Wamala, J.B. Risimeri, E. Chinyamakobvu, S.A. Henderson, S. Fukai, The use of seedling leaf death scores for evaluation of drought resistance of rice, Field Crops Res. 55 (1998)129-139.

DOI: 10.1016/s0378-4290(97)00074-9

Google Scholar

[29] Mohammadkhani, N., R. Heidari, Drought-induced accumulation of soluble sugars and proline in two maize varieties, World Appl. Sci. J. 3 (2008): 448-453.

Google Scholar

[30] Moosavi, S.G., The effect of water deficit stress and nitrogen fertilizer levels on morphology traits, yield and leaf area index in maize, Pak. J. Bot. 44 (2012) 1351-1355.

Google Scholar

[31] Muchow, R.C., Canopy development in grain legumes grown under DiHerenl soil water regimes in a semi-arid tropical environment, Field Crops Res. 11 (1985) 99 -109.

DOI: 10.1016/0378-4290(85)90094-2

Google Scholar

[32] Nawaz, F., M.Y. Ashraf, R. Ahmad, E.A. Waraich, Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions, Biol. Trace Elem. Research 151 (2013) 284-293.

DOI: 10.1007/s12011-012-9556-9

Google Scholar

[33] Riaz, A.T.I.F., A. Younis, A.R. Taj, A. Karim, U. Tariq, S. Munir, S.I.T.W.A.T. Riaz, Effect of drought stress on growth and flowering of marigold (Tagetes erecta L.), Pak. J. Bot. 45 (2013) 123-131.

Google Scholar

[34] Riccardi, F., P. Gazeau, D. de Vienne, M. Zivy, Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification, Plant Physiol. 117 (1998) 1253-1263.

DOI: 10.1104/pp.117.4.1253

Google Scholar

[35] Serraj, R., T. R. Sinclair, N2 fixation response to drought in common bean (Phaseolus vulgaris L.), Ann. Bot. 82 (1998) 229-234.

DOI: 10.1006/anbo.1998.0670

Google Scholar

[36] Siddique, M.R.B, A. Hamid, M.S. Islam, Drought stress effects on water relations of wheat, Bot. Bull. Acad. Sinica. 41 (2000) 35-39.

Google Scholar

[37] Singh, S., A.K. Gupta, N. Kaur, Differential responses of antioxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance, J. Agron. Crop Sci. 198 (2012) 185-195.

DOI: 10.1111/j.1439-037x.2011.00497.x

Google Scholar

[38] Singh S.P., Drought resistance in the race Durango dry bean landraces and cultivars, Agron. J. 99 (2007) 1219-1225.

DOI: 10.2134/agronj2006.0301

Google Scholar

[39] Yagoob, H., M. Yagoob, The effects of water deficit stress on protein yield of mung bean genotypes, Peak J. Agric. Sci. 2 (2014) 30-35.

Google Scholar