[1]
Abdelmeguid, N., Kheirallah, A. M., Abou-Shaban, Adham, K and Abdel-Moneim, A. (2002). Histolochemical and biochemical changes in liver of Tilapia zilli, as a consequence of water pollution. J. Biol. Sci., 2: 224-229.
DOI: 10.3923/jbs.2002.224.229
Google Scholar
[2]
Acharya, K., Jack, J.D. and Bukaveckas, P.A. (2005). Dietary effects on life history traits of riverine Bosmina. Freshwater Biol., 50: 965–975.
DOI: 10.1111/j.1365-2427.2005.01379.x
Google Scholar
[3]
Baker, F. J. and Silverton, R.E. (1976). The theory of staining. Introduction to Medical Laboratory Technology 6th ed. Butterworths, p.385 –391.
Google Scholar
[4]
Castellini, M.A. and Rea, L.D. (1992). The biochemistry of natural fasting at its limits. Experientia., 48: 575-582.
DOI: 10.1007/bf01920242
Google Scholar
[5]
Dheer, J.M.S., Dheer, T.R. and Mahajan, C.L. (1987). Haematological and haematopoietic response to acid stress in an air-breathing freshwater fish, Channa punctatus Bloch. J. Fish Biol., 30 (5): 577-588.
DOI: 10.1111/j.1095-8649.1987.tb05785.x
Google Scholar
[6]
Donaldson, E.M. (1981). The Pituitary Interregnal Axis as an Indicator of Stress in Fish In: Pickering, A.D. (Ed.) Stress in fish. Academic Press, London, pp: 11-47.
Google Scholar
[7]
Dugan, S.G. and Moon, T.W. (1998). Cortisol does not affect hepatic α- and β-adrenoceptor properties in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 18: 343–352.
Google Scholar
[8]
FAO, (1998). Aquaculture production statistics 1987-1996. Fish Cir. 815 FAO: Rome. P. 96.
Google Scholar
[9]
Kaplan, A., Ozabo, L.L., and Ophem, K.E. (1988). Clinical Chemistry: Interpretation and Techniques. 3rd edn. Lea & Febiger, Philadelphia.
Google Scholar
[10]
Kossakowski Korwin, M. (1988). Larval development of carp, Cyprinus carpio in acidic water. J. Fish. Biol., 32: 17-26.
DOI: 10.1111/j.1095-8649.1988.tb05332.x
Google Scholar
[11]
Kroglund, F., and Finstad, B. (2003). Low concentrations of inorganic monomeric aluminum impair physiological status and marine survival of Atlantic salmon. Aquaculture, 222: 119-133.
DOI: 10.1016/s0044-8486(03)00106-6
Google Scholar
[12]
Lawrence, M. S. (1986). Amino acids and Proteins. In: Textbook of Clinical Chemistry. Tiezt, N W (editor) W B Sounders Company, US pp.519-618.
Google Scholar
[13]
Lee, R.M., Gerking, S.D. and Jezierska, B. (1983). Electrolyte balance and energy mobilization in acidstressed rainbow trout (Salmo gairdneri) and their relation to reproductive success. Environment and Biology of Fishes, 8: 115-123.
DOI: 10.1007/bf00005178
Google Scholar
[14]
McWilliams, P. G. and Potts, W. T. W. (1978). The effects of pH and calcium concentrations on gill potentials in the brown trout, Salmo trutta. J. comp. Physiol., 12: 277—286
DOI: 10.1007/bf00688938
Google Scholar
[15]
Milligan, C.L. and Wood, C.M. (1982). Disturbances in hematology, fluid volume distribution and circulatory function associated with low environmental pH in the rainbow trout (Salmo gairdneri). J. Exp. Biol., 99: 397-415.
DOI: 10.1242/jeb.99.1.397
Google Scholar
[16]
Murray, R.K., Granne, D.K., Mayes, P.A. and Rodwell, V.W. (1990). Harper's Biochemistry. 23rd ed., Appleton and Large publishers, Norwalk, Connecticut/ Los Altos, California.
Google Scholar
[17]
Percin, F., Sibel, K., Kursat, F and Sahin, S. (2010). Serum electrolytes of wild and captive Bluefin Tuna (Thunnus thynnus L.) in Turkish Seas J. Anim. Vet. Adv. 9(16): 2207-2213.
DOI: 10.3923/javaa.2010.2207.2213
Google Scholar
[18]
Poleo, A. and Hytterod, S. (2003).The effect of aluminium in Atlantic salmon with special emphasis on alkaline water. Journal of Inorganic Biochemistry, 97: 89–96.
DOI: 10.1016/s0162-0134(03)00261-7
Google Scholar
[19]
Ramesh, M., Srinivasan, R. and Saravanan, M. (2009). Effect of atrazine (herbicide) on blood parameters of common carp Cyprinus carpio (Actinopterygii: Cypriniformes). Afr. J. Environ. Sci. Technol., 3(12): 453-458.
Google Scholar
[20]
Royset, O., Rosseland, B.O., Kristensen, T., Kroglund, F., Garmo, O.A. and Steinnes, E. (2005). Diffusive gradients in thin films sampler predicts stress in brown trout Salmo trutta L. exposed to aluminum in acid fresh waters. Environ Sci Technol., 15(4), 1167-1174.
DOI: 10.1021/es049538l
Google Scholar
[21]
Shalaby, A.M., Khattab, Y.A. and Abdel-Rahman, A.M. (2006). Effects of garlic Allium sativum and chloramphinicol on growth performance, physiological parameters and survival of Nile tilapia Oreochromis niloticus. J. Venom. Anim. Toxins incl. Trop. Dis., 12(2), 172-201.
DOI: 10.1590/s1678-91992006000200003
Google Scholar
[22]
Soivio, A. and Nikinmaa, M. (1981). The swelling of erythrocytes in relation to the oxygen affinity of the blood of the rainbow trout Salmo gairdneri Richardson. In: Stress and fish. (ed. A.D. Pickering), pp.103-119. Academic Press, London.
Google Scholar
[23]
Spiff, A. I. and M. N. Horsefall. (1998). Principles of environmental chemistry. Metroprints Ltd. Port Harcourt. 82 p.
Google Scholar
[24]
Spry, D. J., Wood C. M. and. Hodson. P. V (1981). The effects of environmental acid on freshwater fish with particular reference to the soft water lakes in Ontario and the modifying effects of heavy metals. A literature review. Can. Tech. Rep. Fish. Aquat. Sci., 999: 144 pp.
Google Scholar
[25]
Vijayan, M.M., Pereira, C., Grau, E.G., and Iwama, G.K. (1997). Metabolic responses to confinement stress in tilapia: the role of cortisol. Comp. Biochem. Physiol., C, 116, 89-95.
DOI: 10.1016/s0742-8413(96)00124-7
Google Scholar
[26]
Wells, R. M G., R. H. Mc Intyre, A. K. Morgan, and P. S. Davie. (1986). Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors. Comp. Biochem. Physiol., 84:565–571.
DOI: 10.1016/0300-9629(86)90366-x
Google Scholar
[27]
Wurst, W.A. and R.R. Stickney, (1989). Responses of red drum (Sciaenopso cellatus) to calcium and magnesium concentrations in fresh and salt water. Aquaculture, 76: 21-35.
DOI: 10.1016/0044-8486(89)90248-2
Google Scholar