Haematological and Blood Biochemical Changes in the Fresh Water Fish, Notopterus notopterus (Pallas) Exposed to Acidic Medium

Article Preview

Abstract:

The present study was carried out to find out the changes induced by one of the stress conditions such as acidic medium exposure on some haematological and blood biochemical, parameters in the fresh water fish, Notopterus notopterus. Increase in the haemoglobin and haematocrite indicate haemoconcentration in the fish blood. Glucose, alkaline phosphatase, sodium and calcium, protein, BUN, creatinine, triglycerides, enzymes such as SGOT and SGPT were decreased in the fish N.notopterus exposed to acidic condition. The changes in the environmental factors such as acidic condition cause stress to the fish which may bring disturbance in the blood parameters effecting the survival of fish.

Info:

Pages:

27-33

Citation:

Online since:

August 2015

Export:

Share:

Citation:

* - Corresponding Author

[1] Abdelmeguid, N., Kheirallah, A. M., Abou-Shaban, Adham, K and Abdel-Moneim, A. (2002). Histolochemical and biochemical changes in liver of Tilapia zilli, as a consequence of water pollution. J. Biol. Sci., 2: 224-229.

DOI: 10.3923/jbs.2002.224.229

Google Scholar

[2] Acharya, K., Jack, J.D. and Bukaveckas, P.A. (2005). Dietary effects on life history traits of riverine Bosmina. Freshwater Biol., 50: 965–975.

DOI: 10.1111/j.1365-2427.2005.01379.x

Google Scholar

[3] Baker, F. J. and Silverton, R.E. (1976). The theory of staining. Introduction to Medical Laboratory Technology 6th ed. Butterworths, p.385 –391.

Google Scholar

[4] Castellini, M.A. and Rea, L.D. (1992). The biochemistry of natural fasting at its limits. Experientia., 48: 575-582.

DOI: 10.1007/bf01920242

Google Scholar

[5] Dheer, J.M.S., Dheer, T.R. and Mahajan, C.L. (1987). Haematological and haematopoietic response to acid stress in an air-breathing freshwater fish, Channa punctatus Bloch. J. Fish Biol., 30 (5): 577-588.

DOI: 10.1111/j.1095-8649.1987.tb05785.x

Google Scholar

[6] Donaldson, E.M. (1981). The Pituitary Interregnal Axis as an Indicator of Stress in Fish In: Pickering, A.D. (Ed.) Stress in fish. Academic Press, London, pp: 11-47.

Google Scholar

[7] Dugan, S.G. and  Moon, T.W. (1998). Cortisol does not affect hepatic α- and β-adrenoceptor properties in rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem., 18: 343–352.

Google Scholar

[8] FAO, (1998). Aquaculture production statistics 1987-1996. Fish Cir. 815 FAO: Rome. P. 96.

Google Scholar

[9] Kaplan, A., Ozabo, L.L., and Ophem, K.E. (1988). Clinical Chemistry: Interpretation and Techniques. 3rd edn. Lea & Febiger, Philadelphia.

Google Scholar

[10] Kossakowski Korwin, M. (1988). Larval development of carp, Cyprinus carpio in acidic water. J. Fish. Biol., 32: 17-26.

DOI: 10.1111/j.1095-8649.1988.tb05332.x

Google Scholar

[11] Kroglund, F., and Finstad, B. (2003). Low concentrations of inorganic monomeric aluminum impair physiological status and marine survival of Atlantic salmon. Aquaculture, 222: 119-133.

DOI: 10.1016/s0044-8486(03)00106-6

Google Scholar

[12] Lawrence, M. S. (1986). Amino acids and Proteins. In: Textbook of Clinical Chemistry. Tiezt, N W (editor) W B Sounders Company, US pp.519-618.

Google Scholar

[13] Lee, R.M., Gerking, S.D. and Jezierska, B. (1983). Electrolyte balance and energy mobilization in acidstressed rainbow trout (Salmo gairdneri) and their relation to reproductive success. Environment and Biology of Fishes, 8: 115-123.

DOI: 10.1007/bf00005178

Google Scholar

[14] McWilliams, P. G. and Potts, W. T. W. (1978). The effects of pH and calcium concentrations on gill potentials in the brown trout, Salmo trutta. J. comp. Physiol., 12: 277—286

DOI: 10.1007/bf00688938

Google Scholar

[15] Milligan, C.L. and Wood, C.M. (1982). Disturbances in hematology, fluid volume distribution and circulatory function associated with low environmental pH in the rainbow trout (Salmo gairdneri). J. Exp. Biol., 99: 397-415.

DOI: 10.1242/jeb.99.1.397

Google Scholar

[16] Murray, R.K., Granne, D.K., Mayes, P.A. and Rodwell, V.W. (1990). Harper's Biochemistry. 23rd ed., Appleton and Large publishers, Norwalk, Connecticut/ Los Altos, California.

Google Scholar

[17] Percin, F., Sibel, K., Kursat, F and Sahin, S. (2010). Serum electrolytes of wild and captive Bluefin Tuna (Thunnus thynnus L.) in Turkish Seas J. Anim. Vet. Adv. 9(16): 2207-2213.

DOI: 10.3923/javaa.2010.2207.2213

Google Scholar

[18] Poleo, A. and Hytterod, S. (2003).The effect of aluminium in Atlantic salmon with special emphasis on alkaline water. Journal of Inorganic Biochemistry, 97: 89–96.

DOI: 10.1016/s0162-0134(03)00261-7

Google Scholar

[19] Ramesh, M., Srinivasan, R. and Saravanan, M. (2009). Effect of atrazine (herbicide) on blood parameters of common carp Cyprinus carpio (Actinopterygii: Cypriniformes). Afr. J. Environ. Sci. Technol., 3(12): 453-458.

Google Scholar

[20] Royset, O., Rosseland, B.O., Kristensen, T., Kroglund, F., Garmo, O.A. and Steinnes, E. (2005). Diffusive gradients in thin films sampler predicts stress in brown trout Salmo trutta L. exposed to aluminum in acid fresh waters. Environ Sci Technol., 15(4), 1167-1174.

DOI: 10.1021/es049538l

Google Scholar

[21] Shalaby, A.M., Khattab, Y.A. and Abdel-Rahman, A.M. (2006). Effects of garlic Allium sativum and chloramphinicol on growth performance, physiological parameters and survival of Nile tilapia Oreochromis niloticus. J. Venom. Anim. Toxins incl. Trop. Dis., 12(2), 172-201.

DOI: 10.1590/s1678-91992006000200003

Google Scholar

[22] Soivio, A. and Nikinmaa, M. (1981). The swelling of erythrocytes in relation to the oxygen affinity of the blood of the rainbow trout Salmo gairdneri Richardson. In: Stress and fish. (ed. A.D. Pickering), pp.103-119. Academic Press, London.

Google Scholar

[23] Spiff, A. I. and M. N. Horsefall. (1998). Principles of environmental chemistry. Metroprints Ltd. Port Harcourt.  82 p.

Google Scholar

[24] Spry, D. J., Wood C. M. and. Hodson. P. V (1981). The effects of environmental acid on freshwater fish with particular reference to the soft water lakes in Ontario and the modifying effects of heavy metals. A literature review. Can. Tech. Rep. Fish. Aquat. Sci., 999: 144 pp.

Google Scholar

[25] Vijayan, M.M., Pereira, C., Grau, E.G., and Iwama, G.K. (1997). Metabolic responses to confinement stress in tilapia: the role of cortisol. Comp. Biochem. Physiol., C, 116, 89-95.

DOI: 10.1016/s0742-8413(96)00124-7

Google Scholar

[26] Wells, R. M G., R. H. Mc Intyre, A. K. Morgan, and P. S. Davie. (1986). Physiological stress responses in big gamefish after capture: observations on plasma chemistry and blood factors. Comp. Biochem. Physiol., 84:565–571.

DOI: 10.1016/0300-9629(86)90366-x

Google Scholar

[27] Wurst, W.A. and R.R. Stickney, (1989). Responses of red drum (Sciaenopso cellatus) to calcium and magnesium concentrations in fresh and salt water. Aquaculture, 76: 21-35.

DOI: 10.1016/0044-8486(89)90248-2

Google Scholar