[1]
R. Webster, Neurotransmitters, Drugs and Brain Function, John Wiley & Sons, London, 2005, 5-67.
Google Scholar
[2]
H. Kaplan, B. Sadock, Synopsis of Psychiatry, 7th Edition, William & Wilkins, Maryland, 1994.
Google Scholar
[3]
M. Padurariu, A. Ciobica, R. Lefter, I. Serban, C. Stefanescu, R. Chirita, The oxidative stress hypothesis in Alzheimer's disease, Psychiatr Danub. 25 (2013) 401-9.
Google Scholar
[4]
S. Gauthier, M. Emre, M. Farlow, R. Bullock, G. Grossberg S. Potkin, Strategies for continued successful treatment of Alzheimer's disease: switching cholinesterase inhibitors, Curr Med Res Opin. 19 (2003) 707–714.
DOI: 10.1185/030079903125002450
Google Scholar
[5]
Z. Ji, T. Dong, W. Ye, R. Choi, C. Lo, K. Tsim, Ginsenoside Re attenuate β-amyloid and serum-free induced neurotoxicity in PC12 cells, J Ethnopharmacol. 107 (2006) 48–52.
DOI: 10.1016/j.jep.2006.02.004
Google Scholar
[6]
M. Findeis, Approaches to discovery and characterization of inhibitors of amyloid-beta peptide polymerization, Biochim Biophys Acta. 1502 (2000) 76–84.
DOI: 10.1016/s0925-4439(00)00034-x
Google Scholar
[7]
M. Padurariu, A. Ciobica, I. Mavroudis, D. Fotiou, S. Baloyannis, Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer's disease patients, Psychiatr Danub. 24 (2012) 152-8.
Google Scholar
[8]
S. Scheff, D. Price, F. Schmitt, M. Scheff, E. Mufson, Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease, J Alzheimers Dis. 24 (2011) 547-57.
DOI: 10.3233/jad-2011-101782
Google Scholar
[9]
R. Pinder, Is Alzheimer's a Preventable Disease?, Annals of General Psychiatry. 7 (2008) 1.
Google Scholar
[10]
I. Serban, C.Toarba, S. Hogas, A. Covic, A. Ciobica, R. Chirita, M. Graur, The relevance of body mass index in the cognitive status of diabetic patients with different alcohol drinking patterns, Arch. Biol. Sci. 66 (2014) 347-353.
DOI: 10.2298/abs1401347t
Google Scholar
[11]
A. Basli, S. Soulet, N. Chaher, J. Mérillon, M. Chibane, J. Monti, T. Richard, Winepolyphenols: potential agents in neuroprotection, Oxid Med Cell Longev. 2012 (2012) 805762.
DOI: 10.1155/2012/805762
Google Scholar
[12]
J. Coyle, P. Kershaw, Galantamine a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer's disease, Biol Psychiatry. 49 (2001) 289–299.
DOI: 10.1016/s0006-3223(00)01101-x
Google Scholar
[13]
M. Mehta, A. Adem, M. Sabbagh, New acetylcholinesterase inhibitors for Alzheimer's disease, IJAD. 2012 (2012) 928-983.
Google Scholar
[14]
I. Kang, Y. Jeon, X. Yin, J. Nam, S. You, M. Hong et al., Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid and reduces beta-amyloid mediated neuronal death, Food Chem Toxicol. 49 (2011) 2252–2259.
DOI: 10.1016/j.fct.2011.06.023
Google Scholar
[15]
M. Yu, A. Wong, K. So, J. Fang, W. Yuen, R. Chang, New polysaccharide from Nerium indicum protects neurons via stress kinase signaling pathway. Brain Res. 1153 (2007) 221–230.
DOI: 10.1016/j.brainres.2007.03.074
Google Scholar
[16]
N. Gericke, Plants, products and people: Southern African perspectives. Advances in Phytomedicine, Elsevier, Amsterdam, 2002, 155–162.
DOI: 10.1016/s1572-557x(02)80022-8
Google Scholar
[17]
E. Adewusi, N. Moodley, V. Steenkamp, In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pac J Trop Med. 4 (2011) 829-835.
DOI: 10.1016/s1995-7645(11)60203-4
Google Scholar
[18]
R. Cao, W. Peng, Z. Wang, A. Xu, Beta-Carboline alkaloids: biochemical and pharmacological functions, Curr Med Chem. 14 (2007) 479–500.
DOI: 10.2174/092986707779940998
Google Scholar
[19]
M. Padurariu, A. Ciobica, L. Hritcu, B. Stoica, W. Bild, C. Stefanescu, Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease, Neurosci Lett. 469 (2010) 6-10.
DOI: 10.1016/j.neulet.2009.11.033
Google Scholar
[20]
L. Hritcu, V. Bild, H. Foyet, A. Ciobica, I. Serban, D. Timofte, E. Anton, Antioxidative effects of the methanolic extract of Hibiscus asper leaves in mice, Romanian Biotechnological Letters. 19 (2014) 9376-9383.
Google Scholar
[21]
M. Sano, S. Salloway, Moving from treatment to prevention in Alzheimer's disease with vitamin E and estrogen, Psychiatric Times, 1999.
Google Scholar
[22]
E. Abner, F. Schmitt, M. Mendiondo, J. Marcum, R. Kryscio, Vitamin E and all-cause mortality: a meta-analysis, Curr Aging Sci. 4 (2011) 158-70.
DOI: 10.2174/1874609811104020158
Google Scholar
[23]
E. Miller, R. Pastor-Barriuso, D. Dalal, R. Riemersma, L. Appel, E. Guallar, Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality, Ann Intern Med. 142 (2005) 37-46.
DOI: 10.7326/0003-4819-142-1-200501040-00110
Google Scholar
[24]
B. Drever, W. Anderson, G. Riedel, D. Kim, J. Ryu, D. Choi, B. Platt, The seed extract of Cassia obtusifolia offers neuroprotection to mouse hippocampal cultures. J Pharmacol Sci. 107 (2008) 380–392.
DOI: 10.1254/jphs.08034fp
Google Scholar
[25]
M. Golechha, J. Bhatia, D. Arya, Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice, J Environ Biol. 33 (2012) 95–100.
Google Scholar
[26]
K. Selvendiran, J. Singh, K. Krishnan, D. Sakthisekaran, Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice, Fitoterapia. 74 (2003); 109–115.
DOI: 10.1016/s0367-326x(02)00304-0
Google Scholar
[27]
K. Srinivasan, Black pepper and its pungent principle-piperine: a review of diverse physiological effects, Crit Rev Food Sci. 47 (2007) 735–748.
DOI: 10.1080/10408390601062054
Google Scholar
[28]
M. Azzubaidi, A. Saxena, N. Talib, Q. Ahmed, B. Dogarai, Protective effect of treatment with black cumin oil on spatial cognitive functions of rats that suffered global cerebrovascular hypoperfusion, Acta Neurobiol Exp (Wars). 72 (2012) 154–165.
Google Scholar
[29]
T. Dillinger, P. Barriga, S. Escárcega, M. Jimenez, D. Salazar Lowe et al., Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate, J Nutr. 130 (2000) 2057S–2072S.
DOI: 10.1093/jn/130.8.2057s
Google Scholar
[30]
M. Galleano, P. Oteiza, C. Fraga, Cocoa, chocolate, and cardiovascular disease, J Cardiovasc Pharmacol. 54 (2009) 483–490.
DOI: 10.1097/fjc.0b013e3181b76787
Google Scholar
[31]
A. Nehlig, The neuroprotective effects of cocoa flavanol and its influence on cognitive performance, Br J Clin Pharmacol. 75 (2013) 716-727.
DOI: 10.1111/j.1365-2125.2012.04378.x
Google Scholar
[32]
K. Rahman, Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 22 (2007) 219–236.
Google Scholar
[33]
B. Zhao, X. Li, R. He, S. Cheng, W. Xin, Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals, Cell Biophys. 14 (1989) 175–185.
DOI: 10.1007/bf02797132
Google Scholar
[34]
M. Singh, M. Arseneaul, T. Sanderson, V. Murthy, C, Ramassamy, Challenges for research on polyphenols from foods in Alzheimer's disease: Bioavailability, metabolism, and cellular and molecular mechanisms, J Agric Food Chem. 56 (2008) 4855–4873.
DOI: 10.1021/jf0735073
Google Scholar
[35]
D. Katz, K. Doughty, A. Ali, Cocoa and chocolate in human health and disease, Antioxid Redox Signal. 15 (2011) 2779–2811.
DOI: 10.1089/ars.2010.3697
Google Scholar
[36]
D. Kim, J. Kim, Y. Han, Alzheimer's disease drug discovery from herbs: neuroprotectivity from beta-amyloid (1-42) insult, J Altern Complement Med. 13 (2007) 333–340.
DOI: 10.1089/acm.2006.6107
Google Scholar
[37]
J. Dugoua, D. Seely, D. Perri, K. Cooley, T. Forelli et al., From type 2 diabetes to antioxidant activity: a systematic review of the safety and efficacy of common and cassia cinnamon bark, Can J Physiol Pharmacol. 85 (2007) 837–847.
DOI: 10.1139/y07-080
Google Scholar
[38]
A. Khan, M. Safdar, M. Ali Khan, K. Khattak, R. Anderson, Cinnamon improves glucose and lipids of people with type 2 diabetes, Diabetes Care. 26 (2003) 3215–3218.
DOI: 10.2337/diacare.26.12.3215
Google Scholar
[39]
S. Brahmachari, A. Jana, K. Pahan, Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses, J Immunol. 183 (2009) 5917–5927.
DOI: 10.4049/jimmunol.0803336
Google Scholar
[40]
B. Ouattara, R. Simard, R. Holley, G. Piette, A. Begin, Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms, Int J Food Microbiol. 37 (1997) 155–162.
DOI: 10.1016/s0168-1605(97)00070-6
Google Scholar
[41]
D. Peterson, R. George, F. Scaramozzino, N. LaPointe, R. Anderson et al., Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease in vitro, J Alzheimers Dis. 17 (2009) 585–597.
DOI: 10.3233/jad-2009-1083
Google Scholar
[42]
R. Anderson, C. Broadhurst, M. Polansky, W. Schmidt, A. Khan et al, Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity, J Agric Food Chem. 52 (2004) 65–70.
DOI: 10.1021/jf034916b
Google Scholar
[43]
S. Bastianetto, S. Krantic, R. Quirion, Polyphenols as potential inhibitors of amyloid aggregation and toxicity: possible significance to Alzheimer's disease, Mini Rev Med Chem. 8 (2008) 429–435.
DOI: 10.2174/138955708784223512
Google Scholar