Neuroprotective Strategies Using Vegetal Compounds in the Treatment of Alzheimer’s Disease

Article Preview

Abstract:

Lately, different therapy strategies for treating or slowing the progression of Alzheimer's disease are being analyzed. Moreover, the last two decades have seen a considerable research effort directed towards discovering the causes of Alzheimer's disease with the ultimate hope of developing safe and effective pharmacological treatments. In addition to the therapeutic strategies based on targeted drugs, the regimens will require the simultaneous application of neuroprotective drugs. Therefore, although there is currently no "cure" for Alzheimer's disease, a large number of potential therapeutic strategies emerged lately. In this small mini-review we will selectively describe some of the compounds derived from plants that could have a great potential in the treatment of various diseases, including Alzheimer's disease. In this way, there are many plant species that have been traditionally used for memory disorders. The differentiated results and powerful activity of these extracts are making these neuroprotective strategies to be somehow plausible for the treatment of Alzheimer's disease. In addition, these plants can be examined in order to isolate and identify their active ingredients and this can serve as a starting point to find safer and more effective agents for therapeutic use. On thing is certain: as the effective treatment options are limited, there is a demand for new drugs. Thus, plant extracts or vegetal compounds could represent an important part in this equation.

Info:

* - Corresponding Author

[1] R. Webster, Neurotransmitters, Drugs and Brain Function, John Wiley & Sons, London, 2005, 5-67.

Google Scholar

[2] H. Kaplan, B. Sadock, Synopsis of Psychiatry, 7th Edition, William & Wilkins, Maryland, 1994.

Google Scholar

[3] M. Padurariu, A. Ciobica, R. Lefter, I. Serban, C. Stefanescu, R. Chirita, The oxidative stress hypothesis in Alzheimer's disease, Psychiatr Danub. 25 (2013) 401-9.

Google Scholar

[4] S. Gauthier, M. Emre, M. Farlow, R. Bullock, G. Grossberg S. Potkin, Strategies for continued successful treatment of Alzheimer's disease: switching cholinesterase inhibitors, Curr Med Res Opin. 19 (2003) 707–714.

DOI: 10.1185/030079903125002450

Google Scholar

[5] Z. Ji, T. Dong, W. Ye, R. Choi, C. Lo, K. Tsim, Ginsenoside Re attenuate β-amyloid and serum-free induced neurotoxicity in PC12 cells, J Ethnopharmacol. 107 (2006) 48–52.

DOI: 10.1016/j.jep.2006.02.004

Google Scholar

[6] M. Findeis, Approaches to discovery and characterization of inhibitors of amyloid-beta peptide polymerization, Biochim Biophys Acta. 1502 (2000) 76–84.

DOI: 10.1016/s0925-4439(00)00034-x

Google Scholar

[7] M. Padurariu, A. Ciobica, I. Mavroudis, D. Fotiou, S. Baloyannis, Hippocampal neuronal loss in the CA1 and CA3 areas of Alzheimer's disease patients, Psychiatr Danub. 24 (2012) 152-8.

Google Scholar

[8] S. Scheff, D. Price, F. Schmitt, M. Scheff, E. Mufson, Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer's disease, J Alzheimers Dis. 24 (2011) 547-57.

DOI: 10.3233/jad-2011-101782

Google Scholar

[9] R. Pinder, Is Alzheimer's a Preventable Disease?, Annals of General Psychiatry. 7 (2008) 1.

Google Scholar

[10] I. Serban, C.Toarba, S. Hogas, A. Covic, A. Ciobica, R. Chirita, M. Graur, The relevance of body mass index in the cognitive status of diabetic patients with different alcohol drinking patterns, Arch. Biol. Sci. 66 (2014) 347-353.

DOI: 10.2298/abs1401347t

Google Scholar

[11] A. Basli, S. Soulet, N. Chaher, J. Mérillon, M. Chibane, J. Monti, T. Richard, Winepolyphenols: potential agents in neuroprotection, Oxid Med Cell Longev. 2012 (2012) 805762.

DOI: 10.1155/2012/805762

Google Scholar

[12] J. Coyle, P. Kershaw, Galantamine a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer's disease, Biol Psychiatry. 49 (2001) 289–299.

DOI: 10.1016/s0006-3223(00)01101-x

Google Scholar

[13] M. Mehta, A. Adem, M. Sabbagh, New acetylcholinesterase inhibitors for Alzheimer's disease, IJAD. 2012 (2012) 928-983.

Google Scholar

[14] I. Kang, Y. Jeon, X. Yin, J. Nam, S. You, M. Hong et al., Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid and reduces beta-amyloid mediated neuronal death, Food Chem Toxicol. 49 (2011) 2252–2259.

DOI: 10.1016/j.fct.2011.06.023

Google Scholar

[15] M. Yu, A. Wong, K. So, J. Fang, W. Yuen, R. Chang, New polysaccharide from Nerium indicum protects neurons via stress kinase signaling pathway. Brain Res. 1153 (2007) 221–230.

DOI: 10.1016/j.brainres.2007.03.074

Google Scholar

[16] N. Gericke, Plants, products and people: Southern African perspectives. Advances in Phytomedicine, Elsevier, Amsterdam, 2002, 155–162.

DOI: 10.1016/s1572-557x(02)80022-8

Google Scholar

[17] E. Adewusi, N. Moodley, V. Steenkamp, In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pac J Trop Med. 4 (2011) 829-835.

DOI: 10.1016/s1995-7645(11)60203-4

Google Scholar

[18] R. Cao, W. Peng, Z. Wang, A. Xu, Beta-Carboline alkaloids: biochemical and pharmacological functions, Curr Med Chem. 14 (2007) 479–500.

DOI: 10.2174/092986707779940998

Google Scholar

[19] M. Padurariu, A. Ciobica, L. Hritcu, B. Stoica, W. Bild, C. Stefanescu, Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease, Neurosci Lett. 469 (2010) 6-10.

DOI: 10.1016/j.neulet.2009.11.033

Google Scholar

[20] L. Hritcu, V. Bild, H. Foyet, A. Ciobica, I. Serban, D. Timofte, E. Anton, Antioxidative effects of the methanolic extract of Hibiscus asper leaves in mice, Romanian Biotechnological Letters. 19 (2014) 9376-9383.

Google Scholar

[21] M. Sano, S. Salloway, Moving from treatment to prevention in Alzheimer's disease with vitamin E and estrogen, Psychiatric Times, 1999.

Google Scholar

[22] E. Abner, F. Schmitt, M. Mendiondo, J. Marcum, R. Kryscio, Vitamin E and all-cause mortality: a meta-analysis, Curr Aging Sci. 4 (2011) 158-70.

DOI: 10.2174/1874609811104020158

Google Scholar

[23] E. Miller, R. Pastor-Barriuso, D. Dalal, R. Riemersma, L. Appel, E. Guallar, Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality, Ann Intern Med. 142 (2005) 37-46.

DOI: 10.7326/0003-4819-142-1-200501040-00110

Google Scholar

[24] B. Drever, W. Anderson, G. Riedel, D. Kim, J. Ryu, D. Choi, B. Platt, The seed extract of Cassia obtusifolia offers neuroprotection to mouse hippocampal cultures. J Pharmacol Sci. 107 (2008) 380–392.

DOI: 10.1254/jphs.08034fp

Google Scholar

[25] M. Golechha, J. Bhatia, D. Arya, Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice, J Environ Biol. 33 (2012) 95–100.

Google Scholar

[26] K. Selvendiran, J. Singh, K. Krishnan, D. Sakthisekaran, Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice, Fitoterapia. 74 (2003); 109–115.

DOI: 10.1016/s0367-326x(02)00304-0

Google Scholar

[27] K. Srinivasan, Black pepper and its pungent principle-piperine: a review of diverse physiological effects, Crit Rev Food Sci. 47 (2007) 735–748.

DOI: 10.1080/10408390601062054

Google Scholar

[28] M. Azzubaidi, A. Saxena, N. Talib, Q. Ahmed, B. Dogarai, Protective effect of treatment with black cumin oil on spatial cognitive functions of rats that suffered global cerebrovascular hypoperfusion, Acta Neurobiol Exp (Wars). 72 (2012) 154–165.

Google Scholar

[29] T. Dillinger, P. Barriga, S. Escárcega, M. Jimenez, D. Salazar Lowe et al., Food of the gods: cure for humanity? A cultural history of the medicinal and ritual use of chocolate, J Nutr. 130 (2000) 2057S–2072S.

DOI: 10.1093/jn/130.8.2057s

Google Scholar

[30] M. Galleano, P. Oteiza, C. Fraga, Cocoa, chocolate, and cardiovascular disease, J Cardiovasc Pharmacol. 54 (2009) 483–490.

DOI: 10.1097/fjc.0b013e3181b76787

Google Scholar

[31] A. Nehlig, The neuroprotective effects of cocoa flavanol and its influence on cognitive performance, Br J Clin Pharmacol. 75 (2013) 716-727.

DOI: 10.1111/j.1365-2125.2012.04378.x

Google Scholar

[32] K. Rahman, Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging. 22 (2007) 219–236.

Google Scholar

[33] B. Zhao, X. Li, R. He, S. Cheng, W. Xin, Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals, Cell Biophys. 14 (1989) 175–185.

DOI: 10.1007/bf02797132

Google Scholar

[34] M. Singh, M. Arseneaul, T. Sanderson, V. Murthy, C, Ramassamy, Challenges for research on polyphenols from foods in Alzheimer's disease: Bioavailability, metabolism, and cellular and molecular mechanisms, J Agric Food Chem. 56 (2008) 4855–4873.

DOI: 10.1021/jf0735073

Google Scholar

[35] D. Katz, K. Doughty, A. Ali, Cocoa and chocolate in human health and disease, Antioxid Redox Signal. 15 (2011) 2779–2811.

DOI: 10.1089/ars.2010.3697

Google Scholar

[36] D. Kim, J. Kim, Y. Han, Alzheimer's disease drug discovery from herbs: neuroprotectivity from beta-amyloid (1-42) insult, J Altern Complement Med. 13 (2007) 333–340.

DOI: 10.1089/acm.2006.6107

Google Scholar

[37] J. Dugoua, D. Seely, D. Perri, K. Cooley, T. Forelli et al., From type 2 diabetes to antioxidant activity: a systematic review of the safety and efficacy of common and cassia cinnamon bark, Can J Physiol Pharmacol. 85 (2007) 837–847.

DOI: 10.1139/y07-080

Google Scholar

[38] A. Khan, M. Safdar, M. Ali Khan, K. Khattak, R. Anderson, Cinnamon improves glucose and lipids of people with type 2 diabetes, Diabetes Care. 26 (2003) 3215–3218.

DOI: 10.2337/diacare.26.12.3215

Google Scholar

[39] S. Brahmachari, A. Jana, K. Pahan, Sodium benzoate, a metabolite of cinnamon and a food additive, reduces microglial and astroglial inflammatory responses, J Immunol. 183 (2009) 5917–5927.

DOI: 10.4049/jimmunol.0803336

Google Scholar

[40] B. Ouattara, R. Simard, R. Holley, G. Piette, A. Begin, Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms, Int J Food Microbiol. 37 (1997) 155–162.

DOI: 10.1016/s0168-1605(97)00070-6

Google Scholar

[41] D. Peterson, R. George, F. Scaramozzino, N. LaPointe, R. Anderson et al., Cinnamon extract inhibits tau aggregation associated with Alzheimer's disease in vitro, J Alzheimers Dis. 17 (2009) 585–597.

DOI: 10.3233/jad-2009-1083

Google Scholar

[42] R. Anderson, C. Broadhurst, M. Polansky, W. Schmidt, A. Khan et al, Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity, J Agric Food Chem. 52 (2004) 65–70.

DOI: 10.1021/jf034916b

Google Scholar

[43] S. Bastianetto, S. Krantic, R. Quirion, Polyphenols as potential inhibitors of amyloid aggregation and toxicity: possible significance to Alzheimer's disease, Mini Rev Med Chem. 8 (2008) 429–435.

DOI: 10.2174/138955708784223512

Google Scholar