[1]
G. Myhre et al., Anthropogenic and Natural Radiative Forcing, In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [T.F. Stocker et al. (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
DOI: 10.1017/cbo9781107415324.018
Google Scholar
[2]
U. Siegenthaler, J.L. Sarmiento, Atmospheric carbon dioxide and the ocean, Nature. 365(6442) (1993) 119-125.
DOI: 10.1038/365119a0
Google Scholar
[3]
K.B. Bartlett, R.C. Harriss, Review and assessment of methane emissions from wetlands, Chemosphere. 26(1) (1993) 261-320.
DOI: 10.1016/0045-6535(93)90427-7
Google Scholar
[4]
J.A. Kleypas et al., Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science. 284(5411) (1999) 118-120.
DOI: 10.1126/science.284.5411.118
Google Scholar
[5]
C. Le Quéré et al., Trends in the sources and sinks of carbon dioxide, Nat. Geosci. 2(12) (2009) 831-836.
Google Scholar
[6]
M.P. Barkley, U. Friess, P.S. Monks, Measuring atmospheric CO2 from space using Full Spectral Initiation (FSI) WFM-DOAS, Atmos. Chem. Phys. 6(11) (2006) 3517-3534.
DOI: 10.5194/acp-6-3517-2006
Google Scholar
[7]
B.P. Tissot, D.H. Welte, Petroleum Formation and Occurrence, Springer-Verlag, New York, 1984.
Google Scholar
[8]
J. Lelieveld, P.J. Crutzen, F.J. Dentener, Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus Ser. B. 50 (1998) 128–150.
DOI: 10.1034/j.1600-0889.1998.t01-1-00002.x
Google Scholar
[9]
M.A.K. Khalil, Atmospheric Methane: Sources, Sinks, and Role in Global Change, NATO ASI Series 1: Global Environmental Change, 13, Springer Verlag, New York, 1993.
DOI: 10.1017/s0376892900033476
Google Scholar
[10]
L. Atique, I. Mahmood, F. Atique, Disturbances in Atmospheric Radiative Balance due to Anthropogenic Activities and its Implications for Climate Change, American-Eurasian J. Agric. & Environ. Sci. 14(1) (2014) 73-84.
Google Scholar
[11]
USEPA, 2013. United States Environmental Protection Agency, Global Mitigation of Non-CO2 Greenhouse Gases: 2010–2030, EPA-430-R-13-011 [Online]. Available: http://www.epa.gov/climatechange/EPAactivities/economics/nonco2mitigation.html.
Google Scholar
[12]
GMI, 2014. Global methane initiative [Online]. Available: https://www.globalmethane.org.
Google Scholar
[13]
S. Kreft, D. Eckstein, L. Dorsch, L. Fischer, Global Climate Risk Index 2016, Germanwatch e.V., Kaiserstr., Stresemannstr. 72 D-53113 Bonn, Germany, ISBN 978-3-943704-37-2, 2015.
Google Scholar
[14]
D.Z. Ye, G.X. Wu, The role of the heat source of the Tibetan plateau in the general circulation, Meteorol, Atmos. Phys. 67 (1998), 181–198.
DOI: 10.1007/bf01277509
Google Scholar
[15]
M.J. Filipiak et al., Carbon monoxide measured by the EOS microwave limb sounder on Aura: first results, Geophys. Res. Lett. 32 (2005) L14825 .
Google Scholar
[16]
Y. Liu et al., The possible influences of the increasing anthropogenic emissions in India on tropospheric ozone and OH, Adv. Atmos. Sci. 20 (2003) 968–977.
DOI: 10.1007/bf02915520
Google Scholar
[17]
M.I. Shahzad et al., Estimating surface visibility at Hong Kong from ground-based LIDAR, sun photometer and operational MODIS products, J Air Waste Manag. Assoc. 63(9) (2013) 1098-1110.
DOI: 10.1080/10962247.2013.801372
Google Scholar
[18]
I. Mahmood et al., Satellite based detection of volcanic SO2 over Pakistan, Global NEST Journal. 18(3) (2016) 591-598.
DOI: 10.30955/gnj.001910
Google Scholar
[19]
H. Bovensmann et al., Remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech. 4 (2010) 781-811.
DOI: 10.5194/amt-3-781-2010
Google Scholar
[20]
A. Butz et al., CH4 retrievals rom space-based solar backscatter measurements: performance evaluation against simulated aerosol and cirrus loaded scenes, J. Geophys. Res.: Atmos. 115 (2010) D24302
DOI: 10.1029/2010jd014514
Google Scholar
[21]
X. Xiong et al., Seven years' observation of mid-upper tropospheric methane from atmospheric infrared sounder, Remote Sens. 2 (2010) 2509–2530
DOI: 10.3390/rs2112509
Google Scholar
[22]
L.L. Strow et al., An overview of the AIRS radiative transfer model, IEEE Trans. Geosci. Remote Sens. 41 (2003) 303–313.
DOI: 10.1109/tgrs.2002.808244
Google Scholar
[23]
E.A. Kort et al., Space-based observations of megacity carbon dioxide, Geophys. Res. Lett. 39(17) (2012).
Google Scholar
[24]
V.S. Rakitin et al., Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents, Atmospheric and Oceanic Optics. 28(6) (2015) 533.
DOI: 10.1134/s1024856015060135
Google Scholar
[25]
A.R. Sharma et al., Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India, Annales geophysicae: atmospheres, hydrospheres and space sciences. 28(2) (2010 367.
DOI: 10.5194/angeo-28-367-2010
Google Scholar
[26]
J. G. Acker, G. Leptoukh, Online Analysis Enhances Use of NASA Earth Science Data, Eos, Trans. Amer. Geophys. Union. 88(2) (2007) 14-17.
DOI: 10.1029/2007eo020003
Google Scholar
[27]
E.T. Olsen, AIRS Version 5 Release Tropospheric CO2 Products. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 2009.
Google Scholar
[28]
Y. Zhang et al., Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation, Chinese sci. bull. 59(14) (2014) 1508-1518.
DOI: 10.1007/s11434-014-0232-7
Google Scholar
[29]
Z.U. Haq et al., Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data, Adv. Space Res. 56(4) (2015) 583-595.
DOI: 10.1016/j.asr.2015.04.026
Google Scholar
[30]
S. Tariq, M. Ali, Atmospheric variability of methane over Pakistan, Afghanistan and adjoining areas using retrievals from SCIAMACHY/ENVISAT, Journal of Atmospheric and Solar-Terrestrial Physics. 135 (2015) 161-173.
DOI: 10.1016/j.jastp.2015.11.002
Google Scholar