Spatiotemporal Monitoring of CO2 and CH4 over Pakistan Using Atmospheric Infrared Sounder (AIRS)

Article Preview

Abstract:

Carbon dioxide (CO2), Methane (CH4) are two most potent greenhouse gases and are major source of climate change. Human activities particularly fossil fuels burning have caused considerable increase in atmospheric concentrations of greenhouse gases. CO2 contributes 60% of anthropogenic greenhouse effect whereas CH4 contributes 15%. Ice core records also show that the concentrations of Carbon dioxide and methane have increased substantially. The emission of these gases alters the Earth’s energy budget and are drivers of climate change. In the present study, atmospheric concentration of CO2 and CH4 over Pakistan is measured using Atmospheric Infrared Sounder (AIRS). Time series and time averaged maps are prepared to measure the concentrations of CO2 and CH4. The results show considerable increase in concentration of Carbon dioxide and methane. The substantial increase in these concentrations can affect human health, earth radiative balance and can damage crops.

Info:

* - Corresponding Author

[1] G. Myhre et al., Anthropogenic and Natural Radiative Forcing, In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [T.F. Stocker et al. (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

DOI: 10.1017/cbo9781107415324.018

Google Scholar

[2] U. Siegenthaler, J.L. Sarmiento, Atmospheric carbon dioxide and the ocean, Nature. 365(6442) (1993) 119-125.

DOI: 10.1038/365119a0

Google Scholar

[3] K.B. Bartlett, R.C. Harriss, Review and assessment of methane emissions from wetlands, Chemosphere. 26(1) (1993) 261-320.

DOI: 10.1016/0045-6535(93)90427-7

Google Scholar

[4] J.A. Kleypas et al., Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science. 284(5411) (1999) 118-120.

DOI: 10.1126/science.284.5411.118

Google Scholar

[5] C. Le Quéré et al., Trends in the sources and sinks of carbon dioxide, Nat. Geosci. 2(12) (2009) 831-836.

Google Scholar

[6] M.P. Barkley, U. Friess, P.S. Monks, Measuring atmospheric CO2 from space using Full Spectral Initiation (FSI) WFM-DOAS, Atmos. Chem. Phys. 6(11) (2006) 3517-3534.

DOI: 10.5194/acp-6-3517-2006

Google Scholar

[7] B.P. Tissot, D.H. Welte, Petroleum Formation and Occurrence, Springer-Verlag, New York, 1984.

Google Scholar

[8] J. Lelieveld, P.J. Crutzen, F.J. Dentener, Changing concentration, lifetime and climate forcing of atmospheric methane, Tellus Ser. B. 50 (1998) 128–150.

DOI: 10.1034/j.1600-0889.1998.t01-1-00002.x

Google Scholar

[9] M.A.K. Khalil, Atmospheric Methane: Sources, Sinks, and Role in Global Change, NATO ASI Series 1: Global Environmental Change, 13, Springer Verlag, New York, 1993.

DOI: 10.1017/s0376892900033476

Google Scholar

[10] L. Atique, I. Mahmood, F. Atique, Disturbances in Atmospheric Radiative Balance due to Anthropogenic Activities and its Implications for Climate Change, American-Eurasian J. Agric. & Environ. Sci. 14(1) (2014) 73-84.

Google Scholar

[11] USEPA, 2013. United States Environmental Protection Agency, Global Mitigation of Non-CO2 Greenhouse Gases: 2010–2030, EPA-430-R-13-011 [Online]. Available: http://www.epa.gov/climatechange/EPAactivities/economics/nonco2mitigation.html.

Google Scholar

[12] GMI, 2014. Global methane initiative [Online]. Available: https://www.globalmethane.org.

Google Scholar

[13] S. Kreft, D. Eckstein, L. Dorsch, L. Fischer, Global Climate Risk Index 2016, Germanwatch e.V., Kaiserstr., Stresemannstr. 72 D-53113 Bonn, Germany, ISBN 978-3-943704-37-2, 2015.

Google Scholar

[14] D.Z. Ye, G.X. Wu, The role of the heat source of the Tibetan plateau in the general circulation, Meteorol, Atmos. Phys. 67 (1998), 181–198.

DOI: 10.1007/bf01277509

Google Scholar

[15] M.J. Filipiak et al., Carbon monoxide measured by the EOS microwave limb sounder on Aura: first results, Geophys. Res. Lett. 32 (2005) L14825 .

Google Scholar

[16] Y. Liu et al., The possible influences of the increasing anthropogenic emissions in India on tropospheric ozone and OH, Adv. Atmos. Sci. 20 (2003) 968–977.

DOI: 10.1007/bf02915520

Google Scholar

[17] M.I. Shahzad et al., Estimating surface visibility at Hong Kong from ground-based LIDAR, sun photometer and operational MODIS products, J Air Waste Manag. Assoc. 63(9) (2013) 1098-1110.

DOI: 10.1080/10962247.2013.801372

Google Scholar

[18] I. Mahmood et al., Satellite based detection of volcanic SO2 over Pakistan, Global NEST Journal. 18(3) (2016) 591-598.

DOI: 10.30955/gnj.001910

Google Scholar

[19] H. Bovensmann et al., Remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications, Atmos. Meas. Tech. 4 (2010) 781-811.

DOI: 10.5194/amt-3-781-2010

Google Scholar

[20] A. Butz et al., CH4 retrievals rom space-based solar backscatter measurements: performance evaluation against simulated aerosol and cirrus loaded scenes, J. Geophys. Res.: Atmos. 115 (2010) D24302

DOI: 10.1029/2010jd014514

Google Scholar

[21] X. Xiong et al., Seven years' observation of mid-upper tropospheric methane from atmospheric infrared sounder, Remote Sens. 2 (2010) 2509–2530

DOI: 10.3390/rs2112509

Google Scholar

[22] L.L. Strow et al., An overview of the AIRS radiative transfer model, IEEE Trans. Geosci. Remote Sens. 41 (2003) 303–313.

DOI: 10.1109/tgrs.2002.808244

Google Scholar

[23] E.A. Kort et al., Space-based observations of megacity carbon dioxide, Geophys. Res. Lett. 39(17) (2012).

Google Scholar

[24] V.S. Rakitin et al., Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents, Atmospheric and Oceanic Optics. 28(6) (2015) 533.

DOI: 10.1134/s1024856015060135

Google Scholar

[25] A.R. Sharma et al., Impact of agriculture crop residue burning on atmospheric aerosol loading—a study over Punjab State, India, Annales geophysicae: atmospheres, hydrospheres and space sciences. 28(2) (2010 367.

DOI: 10.5194/angeo-28-367-2010

Google Scholar

[26] J. G. Acker, G. Leptoukh, Online Analysis Enhances Use of NASA Earth Science Data, Eos, Trans. Amer. Geophys. Union. 88(2) (2007) 14-17.

DOI: 10.1029/2007eo020003

Google Scholar

[27] E.T. Olsen, AIRS Version 5 Release Tropospheric CO2 Products. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 2009.

Google Scholar

[28] Y. Zhang et al., Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation, Chinese sci. bull. 59(14) (2014) 1508-1518.

DOI: 10.1007/s11434-014-0232-7

Google Scholar

[29] Z.U. Haq et al., Carbon monoxide (CO) emissions and its tropospheric variability over Pakistan using satellite-sensed data, Adv. Space Res. 56(4) (2015) 583-595.

DOI: 10.1016/j.asr.2015.04.026

Google Scholar

[30] S. Tariq, M. Ali, Atmospheric variability of methane over Pakistan, Afghanistan and adjoining areas using retrievals from SCIAMACHY/ENVISAT, Journal of Atmospheric and Solar-Terrestrial Physics. 135 (2015) 161-173.

DOI: 10.1016/j.jastp.2015.11.002

Google Scholar