[1]
B. C. Bates et al., Climate change and water. Technical paper of the Intergovernmental Pannel on Climate Change, IPCC Secretariat, Geneva, Switzerland, 2008, p.210.
Google Scholar
[2]
R. Wassmann et al., Region vulnerability of climate change impacts on Asian rice production and scope for adaption. Adv. Agron. 102 (2009) 91-133.
DOI: 10.1016/S0065-2113(09)01003-7
Google Scholar
[3]
J. C. O'Toole, Adaptation of rice to drought prone environments. In: Drought resistance in crop with emphasis on rice, Inter. Rice Res. Ins. Los Banos, Philippines, 1982, pp.195-213.
Google Scholar
[4]
R. Venuprasad, H.R. Lafitte, G. N Atlin, Response to direct selection for grain yield under drought stress in rice, Crop Sci. 47(1) (2007) 258-293.
DOI: 10.2135/cropsci2006.03.0181
Google Scholar
[5]
S. Yoshida, S. Hasegawa, The rice root system: its development and function. In: Drought resistance in crops with emphasis on rice, Inter. Rice Res. Ins. Los Baños, Philippines, 1982, pp.97-114.
Google Scholar
[6]
J. Berneier et al., A large - effect QTL for grain yield under reproductive- stage in upland rice, Crop Sci. 47(2) (2007) 505-516.
DOI: 10.2135/cropsci2006.07.0495
Google Scholar
[7]
A. Kumar et al., Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought tolerant donors in upland and lowland-adapted populations, Field Crop Res. 107 (2008) 221-231.
DOI: 10.1016/j.fcr.2008.02.007
Google Scholar
[8]
J. Ni, P.M. Colowit, D. J. Mackill, Evaluation of genetic diversity in rice subspecies using microsatellite markers, Crop Sci. 42(2) (2002) 601-607.
DOI: 10.2135/cropsci2002.6010
Google Scholar
[9]
D. Botstein et al., Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am. J. Hum. Genet. 32(3) (1980) 314–331.
Google Scholar
[10]
N.T. Lang, Protocol for basics of biotechnology, Agri. Pub. House, Ho Chi Minh, Vietnam, 2002.
Google Scholar
[11]
N.T. Lang et al., Genetic diversity of salt tolerance rice landraces in Vietnam, J. Plant Breed Crop Sci. 1 (2009) 230-243.
Google Scholar
[12]
S.R. McCouch, Molecular mapping of rice chromosomes, Theor. Appl. Genet. 7 (1988) 815-829.
DOI: 10.1007/BF00273666
Google Scholar
[13]
S. Temnykh et al., Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.), Theor. Appl. Genet. 100(5) (2000) 697-712.
DOI: 10.1007/s001220051342
Google Scholar
[14]
S. R. McCouch et al., Microsatellite marker development, mapping and applications in rice genetics and breeding, Plant Mol. Biol. 35 (1997) 89–99.
DOI: 10.1007/978-94-011-5794-0_9
Google Scholar
[15]
IRRI (International Rice Research Institute), Standard Evaluation System for rice, Los Banos, Philippines, 1996.
Google Scholar
[16]
M. Nei, W.H. Li, Mathematical model for studying genetically variation in terms of restriction endonucleases, Proceedings of the National Academy of Sciences. 76 (10) (1979) 5269-5273.
DOI: 10.1073/pnas.76.10.5269
Google Scholar
[17]
F.J. Rohlf, NTSYS-PC, Numerical taxonomy and multivariate analysis system, version 1.75; App. Bio. Inc, New York, USA, 1990.
Google Scholar
[18]
P.A. Sneat, R.R Sokal, Numerical Taxonomy. The principles and practice of numerical classification, W. H. Freeman Co, San Francisco, USA, 1973.
Google Scholar
[19]
M. Nei, Analysis of gene diversity in subdivided populations, Proceedings of the National Academy of Sciences. 70(12) (1973) 395-401.
Google Scholar
[20]
M. Abarahahr, B. Rabiei, H. Samizadehlahigi, Assessing genetic diversity of rice varieties under drought stress conditions, Not. Sci. Biol. 3(1) (2011) 114-123.
DOI: 10.15835/nsb315618
Google Scholar
[21]
B. Jongdee et al., Improving drought tolerance in rainfed lowland: an example from Thailand, Agr. Water. Manag. 80(1-3) (2006) 225-240.
DOI: 10.1016/j.agwat.2005.07.015
Google Scholar
[22]
A. J. Garris et al., Genetic structure and diversity in Oryza sativar L., Genentics. 169(3) (2005) 1631-1638.
Google Scholar
[23]
S. G. Ram, V. Thiruvengadam, K. K Vinod, Genetic diversity among cultivars landrace and wild rice relatives of rice as revealed by microsatellite markers, J. Appl. Genet. 48 (2007) 337-345.
DOI: 10.1007/bf03195230
Google Scholar
[24]
L. Jin et al., Genetic diversity and population structure of a diverse set of rice germplasm for association mapping, Theor. Appl. Genet. 121(3) (2010) 475–487.
DOI: 10.1007/s00122-010-1324-7
Google Scholar
[25]
V.V. Nachimuthu et al., Analysis of population structure and genetic diversity in rice germplasm using SSR markers: an initiative towards association mapping of agronomic traits in Oryza Sativa, Rice. 8 (2015) 1-24.
DOI: 10.1186/s12284-015-0062-5
Google Scholar
[26]
I. Bertan, F.I.F. Carvalho, A.C. Oliveira, Parental selection strategies in plant breeding programs, J. Crop Sci. Bio. 10 (2007) 211-222.
Google Scholar
[27]
B. Courtois et al., Genetic diversity and population structure in a European collection of rice, Crop Sci. 52(4) (2012) 1663-1675.
Google Scholar
[28]
H. Chen et al., Development and application of a set of breeder - friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.), Theor. Appl. Genet. 123(6) (2011) 869-879.
DOI: 10.1007/s00122-011-1633-5
Google Scholar
[29]
M. Liaket Ali et al., A rice diversity panel evaluated of genetic and agro-morphological diversity between sub-populations and its geographic distribution, Crop Sci. 51(5) (2011) 2021-2035.
DOI: 10.2135/cropsci2010.11.0641
Google Scholar