[1]
K. Arumuganathan, E.D. Earle, Nuclear DNA content of some important plant species, Plant Mol Biol. 9(3) (1991) 208-218.
DOI: 10.1007/bf02672069
Google Scholar
[2]
O.H. Barulina, Lentils of the USSR and other countries, Bulletin of Applied Botany, Genetics and Plant Breeding. 40 (1930) 1–319.
Google Scholar
[3]
J.I. Cubero, Origin, domestication and evolution, in: C. Webb, G.C. Hawtin (Eds), Lentils. Commonwealth Agricultural Bureau, Slough, UK, 1981, pp.15-38.
Google Scholar
[4]
W. Erskine, S. Rihawe, B.S. Capper, Variation in lentil straw quality, Animal Feed Science and Technology. 28(1-2) (1990) 61–69.
DOI: 10.1016/0377-8401(90)90068-j
Google Scholar
[5]
Joint FAO/IAEA Mutant Variety Database, 2017.
Google Scholar
[6]
R.A. Laskar et al., Induction of mutagenized tomato populations for investigation on agronomic traits and mutant phenotyping, Journal of the Saudi Society of Agricultural Sciences. (2016) In Press.
DOI: 10.1016/j.jssas.2016.01.002
Google Scholar
[7]
R.F. Kimball, The mutagenicity of hydrazine and some of its derivatives, Mutat. Res. 39(2) (1977) 111–126.
Google Scholar
[8]
H.H. Smith, Comparative genetic effects of different physical mutagens in higher plants, in: Induced Mutations and Plant Breeding Improvement, IAEA, Vienna, 1972, pp.75-93.
Google Scholar
[9]
R. Kumar, S.C. Mani, Chemical mutagenesis in Manhar variety of rice (Oryza sativa L.), Indian J. Genet. 57(2) (1997) 120-126.
Google Scholar
[10]
N.B. Gaikwad, V.S. Kothekar, Mutagenic effectiveness and efficiency of ethylmethane sulphonate and sodium azide in lentil (Lens culinaris Medik.), Indian J. Genet. 64(1) (2004) 73-74.
Google Scholar
[11]
A. Kodym, R. Afza, Physical and chemical mutagenesis, Meth. Mol. Biol. 236 (2003) 189-203.
Google Scholar
[12]
C.F. Konzak et al., Efficient chemical mutagenesis, Rad. Bot. 5(Suppl.) (1965) 49-70.
Google Scholar
[13]
M.L.H. Kaul, A.K. Bhan, Mutagenic effectiveness and efficiency of EMS, dES and gamma rays in rice, Theor. Appl. Genet. 50(5) (1977) 241-246.
DOI: 10.1007/bf00273758
Google Scholar
[14]
I.S. Solanki, B. Sharma, Mutagenic effectiveness and efficiency of gamma rays, ethyl imine and N-nitroso-N-ethyl urea in macrosperma lentil (Lens culinaris Medik), Indian J. Genet. 54(1) (1994) 72-76.
Google Scholar
[15]
A.K. Singh, Mutagenic effectiveness and efficiency of gamma rays and ethylmethane sulphonate in mungbean, Madras Agric. J. 94(1-6) (2007) 7-13.
Google Scholar
[16]
T.M. Shah et al., Induced genetic variability in chickpea (Cicer arietinum L.) II. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens, Pak. J. Bot. 40(2) (2008) 605-613.
Google Scholar
[17]
C. Thilagavathi, L. Mullainathan, Isolation of macro mutants and mutagenic effectiveness, efficiency in blackgram (Vigna mungo (L.) Hepper), Global J. Mol. Sci. 4(2) (2009) 76-79.
Google Scholar
[18]
M. Girija, D. Dhanavel, Mutagenic effectiveness and efficiency of gamma rays, ethylmethane sulphonate and their combined treatments in cowpea (Vigna unguiculata L. Walp), Global J. Mol. Sci. 4(2) (2009) 68-75.
Google Scholar
[19]
M.H. Khan, S.D. Tyagi, Studies on effectiveness and efficiency of gamma rays, EMS and their combination in soybean (Glycine max (L.) Merrill), J. Plant Breed. Crop Sci. 2(3) (2010) 55-58
Google Scholar
[20]
M.N. Khan, Mutagenic effectiveness and efficiency of EMS, gamma rays and their combination in black gram (Vigna mungo (L.) Hepper), Ad. Plant Sci. 12(I) (1999) 203-205.
DOI: 10.13189/azb.2020.080311
Google Scholar
[21]
A.S. Gautam, K.C. Sood, A.K. Richaria, Mutagenic effectiveness and efficiency of gamma rays, ethylmethane sulphonate and their synergistic effects in black gram (Vigna mungo L.), Cytologia. 57 (1992) 85-89.
DOI: 10.1508/cytologia.57.85
Google Scholar
[22]
S. Ganapathy et al., Isolation of macromutations and mutagenic effectiveness and efficiency in little millet varieties, World J. Agric. Sci. 4(4) (2008) 483-486.
Google Scholar
[23]
Y.S. Nerker, Mutagenic effectiveness and efficiency of gamma rays, ethylmethane sulphonate and nitroso methyl urea in Lathyrus sativus, Indian J. Genet. 37(1) (1977) 137-141.
Google Scholar
[24]
A. Sharma et al., Induced mutagenesis for improvement of garden pea, Int. J. Veg. Sci. 16 (2010) 60-72.
Google Scholar
[25]
M.H. Khan, S.D. Tyagi, Induced morphological mutants in soybean [Glycine max (L.) Merrill], Front. Agric. China 4(2) (2010) 175-180.
DOI: 10.1007/s11703-009-0086-y
Google Scholar
[26]
M.R. Wani, S. Khan, M.I. Kozgar, Induced chlorophyll mutations. I. Mutagenic effectiveness and efficiency of EMS, HZ and SA in mungbean, Front. Agr. China. 5(4) (2011) 514-518.
DOI: 10.1007/s11703-011-1126-y
Google Scholar
[27]
S. Khan, K. Parveen, S. Goyal, Induced mutations in chickpea-morphological mutants, Front. Agric. China. 5(1) (2011) 35-39.
DOI: 10.1007/s11703-011-1050-1
Google Scholar
[28]
P.M. Gaur, V.K. Gour, Broad-few-leaflets and outwardly curved wings: two new mutants of chickpea, Plant Breed. 122(2) (2003) 192-194.
DOI: 10.1046/j.1439-0523.2003.00807.x
Google Scholar
[29]
C. Toker, A note on the evolution of kabuli chickpeas as shown by induced mutations in Cicer reticulatum Ladizinsky, Genet. Resour. Crop Evol. 56(1) (2009) 7-12.
DOI: 10.1007/s10722-008-9336-8
Google Scholar
[30]
W. Gottschalk, The genetic basis of variation, in: Improving Vegetatively Propagated Crops, Academic Press Limited, London, UK, 1987, pp.317-334.
Google Scholar
[31]
B.S. Tyagi, P.K. Gupta, Induced macromutations in lentil [Lens culinaris], Lentil Experimental News Service. 18(1) (1991) 3-7.
Google Scholar
[32]
M.K. Jana, X-ray induced tall mutants of blackgram (Phaseolus mungo L.), Curr. Sci. 32(10) (1963) 469-470.
Google Scholar
[33]
S.K. Sharma, B. Sharma, Leaf mutations induced with NMU and gamma rays in lentil (Lens culinaris Medik), Curr. Sci. 48 (1979) 916-917.
Google Scholar
[34]
V.R.K. Reddy, P.K. Gupta, Induced mutations in hexaploid triticale. Frequency and spectrum of morphological mutants, Genet. Agr. 42 (1988) 241-254.
Google Scholar
[35]
A. Satyanarayana et al., Multifoliate leaf mutants of mungbean and urdbean, Mut. Breed. Newslet. 33 (1989) 17.
Google Scholar
[36]
V.P. Singh, M. Singh, J.P. Pal, Mutagenic effects of gamma rays and EMS on frequency and spectrum of chlorophyll and macromutations in urdbean (Vigna mungo L. Hepper), Indian J. Genet. 59(2) (1999) 203-210.
DOI: 10.17485/ijst/2015/v8i10/54201
Google Scholar
[37]
D. Talukdar, Dwarf mutations in grass pea (Lathyrus sativus L.): origin, morphology, inheritance and linkage studies, J. Genet. 88(2) (2009) 165-175.
DOI: 10.1007/s12041-009-0024-z
Google Scholar
[38]
C.F. Konzak, S.C. Woo, J. Dickey, An induced semidwarf plant height mutation in spring wheat, Wheat Inf. Serv. 28 (1969) 10-12.
Google Scholar
[39]
A. Shakoor et al., Selection for useful semi dwarf mutants through induced mutation in bread wheat, in: Proc. 5th Int. Wheat Genet. Symp., New Delhi, Vol. I, 1978, pp.23-28.
Google Scholar
[40]
R. Qin et al., Genetic analysis of a novel dominant rice dwarf mutant 986083D, Euphytica 160(3) (2008) 379-387.
DOI: 10.1007/s10681-007-9548-6
Google Scholar
[41]
X.H. Zhang et al., A dwarf wheat mutant is associated with increased drought resistance and altered responses to gravity, African J. Biotech. 4(10) (2005) 1054-1057.
Google Scholar
[42]
D. Arulbalachandran, L. Mullainathan, Chlorophyll and morphological mutants of blackgram (Vigna mungo (L.) Hepper) derived by gamma rays and EMS, J. Phytology. 1(4) (2009) 236-241.
Google Scholar
[43]
S. Goyal, S. Khan, Differential response of single and combined treatment in moist seeds of urdbean, Indian J. Bot. Res. 6(1-2) (2010) 183-188.
Google Scholar
[44]
A. Tripathi, D.K. Dubey, Frequency and spectrum of mutations induced by separate and simultaneous applications of gamma rays, ethyl methane sulphonate (EMS) in two microsperma varieties of lentil, Lentil Experimental News Service. 19(1) (1992) 3-8.
Google Scholar
[45]
I.S. Solanki, B. Sharma, Induction and isolation of morphological mutations in different damage groups in lentil (Lens culinaris Medik), Indian J. Genet. 59(4) (1999) 479-485.
Google Scholar
[46]
S. Khan et al., Induction of morphological mutants in chickpea, Int. Chickpea and Pigeonpea Newslet. 11 (2004) 6-7.
Google Scholar
[47]
R.A. Nilan, Nature of induced mutations in higher plants. Induced mutations and their utilization, in: Proceed. of the Symp. Erawim Baur Gedachtnis Orle Singen IV. 1966, Acverlag Berlin, 1967, pp.5-20.
Google Scholar
[48]
I.S. Solanki, D.S. Phogat, R.S. Waldia, Frequency and spectrum of morphological mutations and effectiveness and efficiency of chemical mutagens in Macrosperma lentil, National J. Plant Improvement. 6(1) (2004) 22-25.
Google Scholar
[49]
V. Kumar et al., Characterization of prebreeding genetic stocks of urdbean (Vigna mungo L. Hepper) induced through mutagenesis, in: Q. . Shu (ed.), Induced Plant Mutations in the Genomics Era, Food and Agriculture Organization of the United Nation, Rome, 2009, pp.391-394.
Google Scholar
[50]
G.S. Sethi, Long-penduncled mutant: a new mutant type induced in barley, Euphytica. 23 (1974) 237-239.
DOI: 10.1007/bf00035863
Google Scholar
[51]
D. Talukdar, A.K. Biswas, An induced internode mutant in grass pea, in: G.K. Manna, S.C. Roy, (ed.) (Eds.), Perspectives in Cytology and Genetics. Vol. 12, AICCG Publ., Kalyani, India, 2006, pp.267-272.
Google Scholar
[52]
J. Sjodin, Induced morphological variations in Vicia faba L., Hereditas. 67(2) (1971) 155-180.
Google Scholar
[53]
V. Marghitu, Mutagenic effect of X-rays and EMS in french bean in M3 and M4 generations, Striinte Agricole. 3 (1972) 105-109.
Google Scholar
[54]
R.K. Singh, Gamma ray induced bold seeded mutant in Vigna mungo (L.) Hepper, Indian J. Genet. 56(1) (1996) 104-108.
Google Scholar
[55]
H.L. Thakur, G.S. Sethi, Characterization and segregation pattern of some macromutations induced in blackgram (Vigna mungo (L.) Hepper), Indian J. Genet. 53(2) (1993) 168-173.
Google Scholar
[56]
W. Gottschalk, G. Wolff, Induced mutations in plant breeding, SpringerVerlag, Berlin, Heidelberg, New York, 1983.
Google Scholar
[57]
J.E. Gunkel, ,A.H. Sparrow, Ionizing radiations: biochemical, physiological and morphological aspects of their effect on plants, in: W. Ruhland (ed.), Encyclopedia of Plant Physiology, Springer, Berlin, 1961, pp.555-611.
Google Scholar
[58]
S. Blixt, Mutation genetics in Pisum, Agric. Hort. Genet. 30 (1972) 1-293.
Google Scholar
[59]
C. Toker, M.I. Cagirgan, Spectrum and frequency of induced mutations in chickpea, Int. Chickpea & Pigeonpea Newslet. 11 (2004) 8-10.
Google Scholar
[60]
A.K. Datta, K. Sengupta, Induced viable macromutants in coriander (Coriandrum sativum L.), Indian J. Genet. 62(3) (2002) 273-274.
Google Scholar
[61]
K.K. Sidorova, Influence of genotypic background on the expressivity of mutant genes of pea, Pulse Crops Newslet. 1(3) (1981) 23-24.
Google Scholar