Comparison of Aerosol Optical Depth Products from Multi-Satellites over Densely Populated Cities of Pakistan

Article Preview

Abstract:

Air pollution in Pakistan is causing damage to health, environment and quality of life. Air pollution in Pakistan is not effectively monitored due to heavy cost involved in setting up ground stations. However, Satellite remote sensing can effectively monitor the air pollution in terms of Aerosol Optical Depth (AOD) at regional as well as global level. However, algorithms used to derive AOD from different sensors have some inherited differences which can pose challenges in monitoring regional AOD at high temporal resolution using more than one sensor. Therefore, this study focuses on comparison of four major satellite based AOD products namely Moderate Resolution Imaging SpectroRadiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), Ozone Monitoring Instrument multiwavelength (OMI) aerosol product and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) with the ground based AErosol RObotic NETwork (AERONET) AOD which is only available from Lahore and Karachi in Pakistan. The correlation of various AOD products with AERONET AOD is estimated statistically through coefficient of determination (R2), Root Mean Square Error (RMSE), slope and intercept. It is noticed that MODIS is relatively accurate and reliable for monitoring air quality on operational bases over the land cover area of Lahore (R2 = 0.78; RMSE = 0.18 ), whereas MISR over the coastal areas of Karachi (R2 = 0.82; RMSE = 0.20 ). The results of the study will help the stakeholders in planning additional ground stations for operational monitoring of air quality at regional level.

Info:

* - Corresponding Author

[1] C.I. Davidson, R.F. Phalen, P.A. Solomon, Airborne particulate matter and human health: A review, Aerosol Science and Technology. 39(8) (2005) 737-749.

DOI: 10.1080/02786820500191348

Google Scholar

[2] F. Dominici et al., Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases, Jama. 295(10) (2006) 1127-1134.

DOI: 10.1001/jama.295.10.1127

Google Scholar

[3] P.V. Hobbs, Aerosol-cloud-climate interactions, Vol. 54, Academic Press, 1993.

Google Scholar

[4] K. Alam, T. Trautmann, T. Blaschke, Aerosol optical properties and radiative forcing over mega-city Karachi, Atmospheric Research. 101(3) (2011) 773-782.

DOI: 10.1016/j.atmosres.2011.05.007

Google Scholar

[5] K. Alam et al., Aerosol size distribution and mass concentration measurements in various cities of Pakistan, Journal of Environmental Monitoring. 13(7) (2011) 1944-1952.

Google Scholar

[6] K. Alam, S. Qureshi, T. Blaschke, Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model, Atmospheric environment. 45(27) (2011) 4641-4651.

DOI: 10.1016/j.atmosenv.2011.05.055

Google Scholar

[7] V.A. Dutkiewicz et al., Black carbon aerosols in urban air in South Asia, Atmospheric Environment. 43(10) (2009) 1737-1744.

DOI: 10.1016/j.atmosenv.2008.12.043

Google Scholar

[8] B.M. Ghauri et al., Composition of aerosols and cloud water at a remote mountain site (2.8 kms) in Pakistan, Chemosphere, Glob Chang Sci. 3 (2001) 51–63.

DOI: 10.1016/s1465-9972(00)00038-6

Google Scholar

[9] B. Ghauri, M. Salam, M.I. Mirza, An assessment of air-quality in Karachi, Pakistan, Environ. Monit. Assess. 32 (1994) 37–45.

DOI: 10.1007/bf00548150

Google Scholar

[10] K. Alam et al., Monitoring spatio-temporal variations in aerosols and aerosol–cloud interactions over Pakistan using MODIS data, Advances in Space Research. 46(9) (2010) 1162-1176.

DOI: 10.1016/j.asr.2010.06.025

Google Scholar

[11] M. Ali et al., A study of aerosol properties over Lahore (Pakistan) by using AERONET data, Asia-Pacific Journal of Atmospheric Sciences. 50(2) (2014) 153-162.

DOI: 10.1007/s13143-014-0004-y

Google Scholar

[12] B.N. Holben et al., AERONET—A federated instrument network and data archive for aerosol characterization, Remote sensing of environment. 66(1) (1998) 1-16.

DOI: 10.1016/s0034-4257(98)00031-5

Google Scholar

[13] B.N. Holben et al., AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment. 66 (1998) 1–16.

DOI: 10.1016/s0034-4257(98)00031-5

Google Scholar

[14] X. Jiang et al., Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area, Remote Sensing of Environment. 107(1) (2007) 45-53.

DOI: 10.1016/j.rse.2006.06.022

Google Scholar

[15] Y.J. Kaufman et al., The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol, IEEE transactions on Geoscience and Remote Sensing. 35(5) (1997) 1286-1298.

DOI: 10.1109/36.628795

Google Scholar

[16] A.A. Kokhanovsky et al., Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments, Atmospheric Research. 85(3) (2007) 372-394.

DOI: 10.1016/j.atmosres.2007.02.008

Google Scholar

[17] M.S. Wong et al., Validation of MODIS, MISR, OMI, and CALIPSO aerosol optical thickness using ground-based sunphotometers in Hong Kong, International journal of remote sensing. 34(3) (2013) 897-918.

DOI: 10.1080/01431161.2012.720739

Google Scholar

[18] K.R. Knapp, Quantification of aerosol signal in GOES 8 visible imagery over the United States, Journal of Geophysical Research: Atmospheres. 107(D20) (2002).

DOI: 10.1029/2001jd002001

Google Scholar

[19] Z. Li et al., First observation‐based estimates of cloud‐free aerosol radiative forcing across China, Journal of Geophysical Research: Atmospheres. 115(D7) (2010).

DOI: 10.1029/2009jd013306

Google Scholar

[20] K. Alam et al., Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi, Atmospheric Environment. 50 (2012) 234-245.

DOI: 10.1016/j.atmosenv.2011.12.027

Google Scholar

[21] K.F. Biswas, B.M. Ghauri, L. Husain, Gaseous and aerosol pollutants during fog and clear episodes in South Asian urban atmosphere, Atmospheric Environment. 42(33) (2008) 7775-7785.

DOI: 10.1016/j.atmosenv.2008.04.056

Google Scholar

[22] I.I. Chaudhri, The vegetation of Karachi, Vegetatio. 10(3-4) (1961) 229-246.

Google Scholar

[23] S.A. Qadir, S.Z. Qureshi, M.A. Ahmed, A phytosociological survey of the Karachi University Campus, Plant Ecology. 13(6) (1966) 339-362.

DOI: 10.1007/bf00242773

Google Scholar

[24] Information on https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_aod_v3?stage=2&place_code =10&region=Asia&state=Pakistan&submit=Get+AERONET+Sites.

Google Scholar

[25] C.L. Parkinson, Aqua: An Earth-observing satellite mission to examine water and other climate variables, IEEE Transactions on Geoscience and Remote Sensing. 41(2) (2003) 173-183.

DOI: 10.1109/tgrs.2002.808319

Google Scholar

[26] D.J. Diner et al., MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season campaign, Geophys. Res. Lett. 28(6) (2001) 3127-3130.

DOI: 10.1029/2001gl013188

Google Scholar

[27] D.M. Winker, W.H. Hunt, M.J. McGill, Initial performance assessment of CALIOP, Geophysi. Res. Lett. 34(19) (2007) L19803.

DOI: 10.1029/2007gl030135

Google Scholar

[28] P.A. Roussos et al., Relations of environmental factors with the phenol content and oxidative enzyme activities of olive explants, Scientia horticulturae. 113(1) (2007) 100-102.

DOI: 10.1016/j.scienta.2007.01.017

Google Scholar

[29] A.S. Wali, B.H. Kabura, Correlation studies in tomato (Lycopersicon lycopersicum L. Karst) as affected by mulching and cultivar during the heat period in the Semi-Arid Region of Nigeria, International Letters of Natural Sciences. 15 (2014) 1-7.

DOI: 10.56431/p-s647mx

Google Scholar

[30] A.C. Rencher, G.B. Schaalje, Linear models in statistics, John Wiley & Sons, 2008.

Google Scholar

[31] P.T.T. Ha et al., Development of new drought tolerant breeding lines for Vietnam using marker-assisted backcrossing, International Letters of Natural Sciences. 59 (2016) 1-13.

DOI: 10.56431/p-4l1252

Google Scholar

[32] P. Gupta et al., MODIS aerosol optical depth observations over urban areas in Pakistan: Quantity and quality of the data for air quality monitoring, Atmospheric Pollution Research. 4(1) (2013) 43–52.

DOI: 10.5094/apr.2013.005

Google Scholar

[33] H. Bibi et al., Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data, Atmospheric Environment. 111 (2015) 113–126.

DOI: 10.1016/j.atmosenv.2015.04.013

Google Scholar

[34] D.J. Diner et al., Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview, IEEE Transactions on Geoscience and Remote Sensing. 36(4) (1998) 1072-1087.

DOI: 10.1109/36.700992

Google Scholar

[35] R.A .Kahn et al., Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies, Journal of Geophysical Research: Atmospheres. 112(18) (2007).

DOI: 10.1029/2006jd008175

Google Scholar

[36] M. Kroon et al., Ozone Monitoring Instrument geolocation verification, Journal of Geophysical Research. 113(15) (2008)

Google Scholar

[37] C. Ahn, O. Torres, P.K. Bhartia, Comparison of ozone monitoring instrument UV aerosol products with aqua/moderate resolution imaging spectroradiometer and multiangle imaging spectroradiometer observations in 2006, Journal of Geophysical Research: Atmospheres. 113(16) (2008).

DOI: 10.1029/2007jd008832

Google Scholar

[38] D.M. Winker et al., Overview of the CALIPSO mission and CALIOP data processing algorithms, Journal of Atmospheric and Oceanic Technology. 26(11) (2009) 2310-2323.

DOI: 10.1175/2009jtecha1281.1

Google Scholar

[39] M.A. Ali, M. Assiri, R. Dambul, Seasonal Aerosol Optical Depth (AOD) variability using satellite data and its comparison over Saudi Arabia for the period 2002–2013, Aero. Air Qual. Res. 17 (2017) 1267–1280.

DOI: 10.4209/aaqr.2016.11.0492

Google Scholar

[40] M.A. Ali, M.E. Assiri, Spatio-temporal analysis of aerosol concentration over Saudi Arabia using satellite remote sensing techniques, Malaysian J. Society Space. 12 (2016) 1‒11.

Google Scholar

[41] M.J. Butt, M.E. Assiri, M.A. Ali, Assessment of AOD variability over Saudi Arabia using MODIS Deep Blue products, Environ. Poll. 231 (2017) 143‒153.

DOI: 10.1016/j.envpol.2017.07.104

Google Scholar

[42] A. Rasheed et al., Measurement and analysis of fine particulate matter (PM2.5) in urban areas of Pakistan, Aerosol Air Qual. Res. 15 (2015) 426–439.

DOI: 10.4209/aaqr.2014.10.0269

Google Scholar

[43] H.A. Khwaja et al., An in-depth characterization of urban aerosols using electron microscopy and energy dispersive X-Ray analysis, CLEAN – Soil, Air, Water. 37(7) (2009) 544-554.

DOI: 10.1002/clen.200900012

Google Scholar