[1]
D. Steinberg, Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity, New England J. Med. 320 (1989) 915–924.
Google Scholar
[2]
B.M. Ames, M.K. Shigens, T.M. Hagen, Oxidants, antioxidants and the degenerative diseases of aging, Proc. Nat. Acad. Sci. 90 (1993) 7915–7922.
DOI: 10.1073/pnas.90.17.7915
Google Scholar
[3]
N.C. Cook, S. Samman, Flavonoids – chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nut. Biochem. 7(2) (1996) 66–76.
Google Scholar
[4]
J.H. Cohen, A.R. Kristal, J.L. Stanford, Fruit and vegetable intakes and prostate cancer risk, J. Nat. Can. Inst. 92 (2000) 61–68.
DOI: 10.1093/jnci/92.1.61
Google Scholar
[5]
B.L. Halvorsen et al., A systematic screening of total antioxidants in dietary plants, J. Nut. 132 (2002) 461–471.
Google Scholar
[6]
G.H. Cao, E. Sofic, R.L. Prior, Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 44 (1996) 3426–3431.
DOI: 10.1021/jf9602535
Google Scholar
[7]
K. Elanchezhyan, R.K.B Murali, D. S Rajavel, Field screening of brinjal varieties on major pests and their natural enemies, J. Biopest. 1(2) (2008) 113–120.
Google Scholar
[8]
D. Miller, Genetically engineered eggplant, Span. XLVIII (2007) 41.
Google Scholar
[9]
D.P. Abrol, J.B. Singh, Relative efficacy of some insecticides against brinjal fruit and shoot borer, Leucinodes orbonalis Guen., and their impact on fruit yield, J. Asia-Pac. Ent. 6(1) (2003) 83–90.
DOI: 10.1016/s1226-8615(08)60172-7
Google Scholar
[10]
S.N. Alam et al., Control of eggplant fruit and shoot borer in South Asia. Technical Bulletin. 36, AVRDC—The World Vegetable Center, Shanhua, Taiwan, 2006.
DOI: 10.57182/jbiopestic.1.2.105-112
Google Scholar
[11]
E.J. Deszyck, R.C.J. Koo, S.V. Ting, Effect of potash on yield and quality of 'Hamlin' and 'Valencia' orange, Proc. Soil Crop Sci. 18 (1958) 129–135.
Google Scholar
[12]
K.E. Lawyer, R.E. Hartz, Effect of sprays on quality factors of raw red tart cherries, Food Technology. 19(3) (1965) 100–103.
Google Scholar
[13]
D.A. Tichenor, J.G. Rodriguez, C. E. Chaplin, Effects of certain pesticides on flavour of frozen strawberries, Food Technol. 13(10) (1959) 587–590.
Google Scholar
[14]
E.F. Murphy et al., Pesticides and food flavor, effect of insecticides and fungicides on the flavor quality of fruits and vegetables, J. Agric. Food Chem. 214 (1961).
DOI: 10.1021/jf60115a014
Google Scholar
[15]
J.P. Sweeny, V.J. Chapman, P.A. Hepner, Effect of selected pesticides on quality of strawberries, Journal of Agricultural and Food Chemistry. 16(4) (1968) 632–634.
DOI: 10.1021/jf60158a028
Google Scholar
[16]
R.A. Habiba, H.M. Ali, S.M.M. Ismail, Biochemical effects of profenofos residue in potatoes, J. Agric. Food Chem. 40 (1992) 1852–1855.
DOI: 10.1021/jf00022a600
Google Scholar
[17]
M.A. Radwan et al., Residue levels of pirimiphos-methyl and cholrifyrifos-methyl on tomato and faba beans plant in relation to their impact on some internal quality parameters, Alex. Sci. Exch. 16(3) (1995) 389–404.
Google Scholar
[18]
N. Bertin et al., Seasonal evolution the quality of fresh glasshouse tomato under Mediterranean conditions, as affected by vapour pressure deficit and plant fruit load, Ann. Bot. 85 (2000) 741–750.
DOI: 10.1006/anbo.2000.1123
Google Scholar
[19]
M.A. Radwan et al., Residue of pirimiphos–methyl and profenofos on green pepper and eggplant fruits and their effect on some quality parameters, Emirates J. Agric. Sci. 16(1) (2004) 32–42.
DOI: 10.9755/ejfa.v12i1.5215
Google Scholar
[20]
Anonymous, Official methods of analysis. Association of official analytical chemists, Washington, D. C. 11/e., 1970.
Google Scholar
[21]
M. Dubois et al., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350–356.
DOI: 10.1021/ac60111a017
Google Scholar
[22]
AOAC, Official methods of analysis of the association of the analytical chemists, 17th Ed., Inc. Virginia, USA, 2000.
Google Scholar
[23]
B. Matthaus, Antioxidant activity of extracts obtained from residues of different oilseeds, J. Agric. Food Chem. 50 (2002) 3444–3452.
DOI: 10.1021/jf011440s
Google Scholar
[24]
C.E. Lamien et al., Inhibition of fowlpox virus by an aqueous acetone acetone extract from galls of Guiera senegalensis J. F. Gmel (Combretaceae), J. Etnopharmacol. 96(1-2) (2005) 249–253.
DOI: 10.1016/j.jep.2004.09.016
Google Scholar
[25]
S. Ranganna, Handbook of analysis and quality control for fruits and vegetables products, 2nd ed., Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 1997.
Google Scholar
[26]
M. Oktay, I. Culcin, O.I. Kufrevioglu, Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts, Lebensmittel-Wissenschaft und-Technologie. 36 (2003) 263–271.
DOI: 10.1016/s0023-6438(02)00226-8
Google Scholar
[27]
M. Oyaizu, Studies on product of browning reaction prepared from glucose amine, Japan. J. Nut. 44 (1986) 307–315.
Google Scholar
[28]
R.P. Singh, C.K.N. Murthy, G.K. Jayaprakash, Studies on the antioxidant acitivity of pomegranate (Pubica granatum) peel and seed extract using in vitro models, J. Agric. Food Chem. 50 (2002) 81–86.
DOI: 10.1021/jf010865b
Google Scholar
[29]
C. Little, Apple and pear maturity manual, Colin R. Little, Sherbrooke, Victoria, Australia, 1999.
Google Scholar
[30]
F. Capocasa et al., Combining quality and antioxidant attributes in the strawberry: The role of genotype, Food Chem. 111 (2008) 872–878.
DOI: 10.1016/j.foodchem.2008.04.068
Google Scholar
[31]
R. Sakiyama, M.A. Stevens, Organic acid accumulation in attached and detached tomato fruits, J. Am. Soc. Hort. Sci. 101 (1976) 394.
DOI: 10.21273/jashs.101.4.394
Google Scholar
[32]
B.J.E. Teskey, S.D. Kung, Some effects of carbaryl on two apple cultivares, Can. J. Plant Sci. 47(3) (1967) 311–318.
DOI: 10.4141/cjps67-055
Google Scholar
[33]
S.A. Van Acker et al., Structural aspects of antioxidant activity of flavonoids, Free Rad. Biol. Med. 20(3) (1996) 331–342.
Google Scholar
[34]
Y. Kiselova et al., Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs, Phytother. Res. 20(11) (2006) 961–965.
DOI: 10.1002/ptr.1985
Google Scholar
[35]
I. Klimczak et al., Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices, J. Food Compost Ann. 20 (2007) 313–322.
DOI: 10.1016/j.jfca.2006.02.012
Google Scholar
[36]
G.K. Jayaprakasha, B. Girennavar, B.S. Patil, Radical scavenging activities of Rio Red grapefruits and Sour orange fruit extracts in different in vitro model systems, Bio Resource Tech. 99(10) (2008) 4484–4494.
DOI: 10.1016/j.biortech.2007.07.067
Google Scholar
[37]
C. Vasco, J. Ruales, A. Kamal-Eldin, Total phenolic compounds and antioxidant capacities of major fruits from Ecuador, Food Chem. 111(4) (2008) 816–823.
DOI: 10.1016/j.foodchem.2008.04.054
Google Scholar
[38]
S.A. Sheikh et al., Phenolic contents and antioxidants activities in jamman fruit (Eugenia jambolana) products, J. Pharm. Nut. Sci. 1(1) (2011) 41–47.
DOI: 10.6000/1927-5951.2011.01.01.08
Google Scholar
[39]
S. Gorinstein et al., Antioxidative properties of Jaffa sweeties and grapefruit and their influence on lipid metabolism and plasma antioxidative potential in rats, Biosci. Biotech. Biochem. 67(4) (2003) 907–910.
DOI: 10.1271/bbb.67.907
Google Scholar
[40]
F.D. Benmeziane, R. Djamai, Y. Cadot, Antioxidant capacity, total phenolic, carotenoid, and vitamin c contents of five table grape varieties from Algeria and their correlations, J. Int. Sci. Vigne Vin. 48 (2014) 153–162.
DOI: 10.20870/oeno-one.2014.48.2.1564
Google Scholar
[41]
S.B. Lotito, B. Frei, Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Rad. Biol. Med. 41(12) (2006) 1727–1746.
DOI: 10.1016/j.freeradbiomed.2006.04.033
Google Scholar
[42]
H. Kappus, Lipid peroxidation - Mechanism and biological relevance, in: Free Radicals and Food Additives, O. I. Aruoma, B. Halliwell (Eds.), Taylor and Francis, New York, 1991, p.59–75.
Google Scholar
[43]
B. N. Shyamala et al., Leafy vegetables extracts- Antioxidant activity and effect on storage stability of heated oils, Innov. Food Sci. Emerging Technol. 6(2) (2005) 239–245.
DOI: 10.1016/j.ifset.2004.12.002
Google Scholar
[44]
M. Tanaka et al., Applications of antioxidative Maillard reaction products from histidine and glucose to sardine products, Nippon Suisan Gakkaishi. 54 (1988) 1409–1414.
DOI: 10.2331/suisan.54.1409
Google Scholar
[45]
K. Robards et al., Phenolic compounds and their role in oxidative processes in fruits, Food Chem. 66 (1999) 401–436.
DOI: 10.1016/s0308-8146(99)00093-x
Google Scholar
[46]
O.E. Adebiyi et al., In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia, Beni-Suef University J. Basic and Appl. Sci. 6 (2017) 10–14.
DOI: 10.1016/j.bjbas.2016.12.003
Google Scholar
[47]
C.J. Guo et al., High performance liquid chromatography coupled with coulometric array detection of electroactive components in fruits and vegetables: Relationship to oxygen radical absorbance capacity, J. Agric. Food Chem. 45 (1997) 1787–1796.
DOI: 10.1021/jf960786d
Google Scholar
[48]
A.R. Proteggente et al., The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition, Free Rad. Res. 36(2) (2002) 217–233.
DOI: 10.1080/10715760290006484
Google Scholar