[1]
K.K. Holoborodko et al., The problem of assessing the viability of invasive species in the conditions of the steppe zone of Ukraine, Visnyk of Dnipropetrovsk University Biology, Ecology. 24(2) (2016) 466–472.
Google Scholar
[2]
O. Marenkov et al., Efect of zinc and cadmium ions on histostructure of antennal glands of marbled crayfsh Procambarus fallax (Hagen, 1870) f. virginalis (Decapoda), Acta Biologica Universitatis Daugavpiliensis. 17(2) (2017): 219–224.
Google Scholar
[3]
Yu.S.Voronkova et al., The problem of the study of oxidative stress in biological research. Bioindication and Ecology Questions, 21(1–2) (2016) 222–234. (in Ukrainian).
Google Scholar
[4]
Y.S. Voronkova, O.M. Marenkov, K.K. Holoborodko, Liver antioxidant system of the Prussian carp and pumpkinseed as response to the environmental change, Ukrainian Journal of Ecology. 8(1) (2018) 749–754.
DOI: 10.15421/2018_276
Google Scholar
[5]
T. Ananieva, Indexes of lipid metabolism in fish from the Zaporizke Reservoir, International Letters of Natural Sciences. 64 (2017) 10–16.
DOI: 10.18052/www.scipress.com/ilns.64.10
Google Scholar
[6]
O. Fedonenko, T. Sharamok, T. Ananieva, Вiochemical parameters of blood in fish from Zaporozhian Reservoir, International Letters of Natural Sciences. 51 (2016) 43–50.
DOI: 10.56431/p-ue8p3t
Google Scholar
[7]
R.A. Novitsky, M.O. Son, The first records of Marmorkrebs [Procambarus fallax (Hagen, 1870) f. virginalis] (Crustacea, Decapoda, Cambaridae) in Ukraine, Ecologia Montenegrina. 5 (2016) 44–46.
DOI: 10.37828/em.2016.5.8
Google Scholar
[8]
O. Marenkov et al., Paremeters of the histological adaptation of marmorkrebs Procambarus fallax f. virginalis (Decapoda, Cambaridae) to Zinc and Cadmium ions pollution, World scientific news. 90 (2017) 189–202.
DOI: 10.18052/www.scipress.com/ilns.70.24
Google Scholar
[9]
G. Kotovska et al., East European crayfish stocks at risk: arrival of non-indigenous crayfish species, Knowl. Manag. Aquat. Ecosyst. 417 (2016) 37.
DOI: 10.1051/kmae/2016024
Google Scholar
[10]
F. Lyko, The Marbled Crayfish (Decapoda: Cambaridae) represents an independent new species, Zootaxa. 4363(4) (2017) 544–552.
DOI: 10.11646/zootaxa.4363.4.6
Google Scholar
[11]
P. Martin et al., The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870), Contributions to Zoology. 79 (2010) 107–118.
DOI: 10.1163/18759866-07903003
Google Scholar
[12]
P. Martin et al., The first record of the parthenogenetic Marmorkrebs (Decapoda, Astacida, Cambaridae) in the wild in Saxony (Germany) raises the question of its actual threat to European freshwater ecosystems, Aquatic Invasions. 5 (2010) 397–403.
DOI: 10.3391/ai.2010.5.4.09
Google Scholar
[13]
Z. Faulkes, Marmorkrebs (Procambarus fallax f. virginalis) are the most popular crayfish in the North American pet trade, Knowledge and Management of Aquatic Ecosystems. 416 (2015) 20–35.
DOI: 10.1051/kmae/2015016
Google Scholar
[14]
H.H. Hobbs, The crayfishes of Florida, Biological Science Series. 3(2) (1942) 1–179.
Google Scholar
[15]
C.A. Taylor et al., Conservation status of crayfishes of the United States and Canada, Fisheries. 21(4) (1996) 25–38.
Google Scholar
[16]
C. Chucholl, M. Pfeiffer, First evidence for an established Marmorkrebs (Decapoda, Astacida, Cambaridae) population in Southwestern Germany, in syntopic occurrence with Orconectes limosus (Rafinesque, 1817), Aquatic Invasions. 5(4) (2010) 405–412.
DOI: 10.3391/ai.2010.5.4.10
Google Scholar
[17]
S. Peay, D.M. Holdich, J. Brickland, Risk assessments of non-indigenous crayfish in Great Britain, Freshwater Crayfish. 17 (2010) 109–122.
Google Scholar
[18]
F.N. Marzano et al., The first record of the marbled crayfish adds further threats to fresh waters in Italy, Aquatic Invasions. 4(2) (2009) 401–404.
DOI: 10.3391/ai.2009.4.2.19
Google Scholar
[19]
B. Lipták et al., Expansion of the marbled crayfish in Slovakia: Beginning of an invasion in the Danube catchment? Journal of Limnology. 75(2) (2016) 305–312.
DOI: 10.4081/jlimnol.2016.1313
Google Scholar
[20]
P. Bohman et al., The first Marmorkrebs (Decapoda: Astacida: Cambaridae) in Scandinavia, BioInvasions Records. 2(3) (2013) 227–232.
DOI: 10.3391/bir.2013.2.3.09
Google Scholar
[21]
J. Patoka, L. Kalous, O. Kopecký, Imports of ornamental crayfish: the first decade from the Czech Republic's perspective. Knowledge and Management of Aquatic Ecosystems. 416 (2015) 4–13.
DOI: 10.1051/kmae/2014040
Google Scholar
[22]
T. Kawai, M. Takahata, The biology of freshwater crayfish, Hokkaido University Press, Sapporo, 2010.
Google Scholar
[23]
G. Scholtz et al., Parthenogenesis in an outsider crayfish, Nature. 421(6925) (2003) 769–873.
Google Scholar
[24]
F. Alwes, G. Scholtz, Stages and other aspects of the embryology of the parthenogenetic Marmorkrebs (Decapoda, Reptantia, Astacida), Development Genes and Evolution. 216(4) (2006) 169–184.
DOI: 10.1007/s00427-005-0041-8
Google Scholar
[25]
Z. Faulkes, The spread of the parthenogenetic marbled crayfish, Marmorkrebs (Procambarus sp.), in the North American pet trade, Aquatic Invasions. 5(4) (2010) 447–450.
DOI: 10.3391/ai.2010.5.4.16
Google Scholar
[26]
P. Martin, S. Thonagel, G. Scholtz, The parthenogenetic Marmorkrebs (Malacostraca: Decapoda: Cambaridae) is a triploid organism, Journal of Zoological Systematics and Evolutionary Research. 54(1) (2016) 13–21.
DOI: 10.1111/jzs.12114
Google Scholar
[27]
A. S. Jimenez, Z. Faulkes, Establishment and care of a laboratory colony of parthenogenetic marbled crayfish, Marmorkrebs, Invertebrate Rearing. 1 (2010) 10–18.
Google Scholar
[28]
G. Vogt, Suitability of the clonal marbled crayfish for biogerontological research: A review and perspective, with remarks on some further crustaceans, Biogerontology. 11(6) (2010) 643–669.
DOI: 10.1007/s10522-010-9291-6
Google Scholar
[29]
G. Vogt et al., The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals, Biology Open. 4(11) (2015) 1583–1594.
DOI: 10.1242/bio.014241
Google Scholar
[30]
Physician ethics and human rights: the provisions for the use of animals in biomedical research, Exp. Clin. Physiol. Biochem. 22(2) (2003) 108–109. (in Ukrainian).
Google Scholar
[31]
V.S. Asatiani, New methods of biochemical photometry, Science, Moscow, USSR, 1965. (in Russian)
Google Scholar
[32]
Methods of biochemical research (lipid and energy metabolism), Leningrad University, Leningrad, USSR, 1982. (in Russian)
Google Scholar
[33]
J.H. Lowry et al., Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193(1) (1951) 265–275.
Google Scholar
[34]
O. Kori-Siakpere, R.B. Ikomi, M.G. Ogbe, Variations in acid phosphatase and alkaline phosphatase activities in the plasma of the african catfish: Clarias gariepinus exposed to sublethal concentrations of potassium permanganate, Astan J. Exp. Boil. Sci. 1(1) (2010) 170–174.
Google Scholar
[35]
T.C. Diamantino et al., Lactate dehydrogenase activity – an effective parameter in aquatic toxicity tests, Chemosphere. 45 (2001) 530–560.
Google Scholar
[36]
R. Varadarajan, Biochemical effects of different phenolic compounds on Oreochromis Mosambicus (Peters), Ph.D. thesis, Cochin University of Science and Technology, 2010.
Google Scholar
[37]
A. Cohen, G. Nugegova, M.M. Gagnon, Metabolic responses of fish following exposure to two different oil spills remediation techniques, Ecotoxicol. Environ. Saf. 48(3) (2001) 306–310.
DOI: 10.1006/eesa.2000.2020
Google Scholar
[38]
M. S. Zaki, M. Olfat, F. S. Shalaki, Phenol toxicity affecting hematological changes in cat fish (Сlarius lazera), Life science journal. 8(2) (2011) 244–248.
Google Scholar
[39]
A. Alesander et al., Evaluation of changes in metabolic parameters and enzymes involved in metabolic pathways in Clarias botrachus after exposed to phenolic compounds, Asian Journal of Biomedical and Pharmacential Sciences. 3(21) (2013) 60–67.
Google Scholar
[40]
S. Agrahari, G. Krishna, Fate and toxicity of cadmium and lead accumulation in different tissues (gills, liver, kidney, brain) of a freshwater fish Channa punctatus, Journal of Ecophysiology and Occupational Health. 3(4) (2007) 151–155.
Google Scholar
[41]
R.P. Yadav et al., Metabolic changes in fresh water fish Channa punctatus due to Stem bark Extract of Croton tiglium, J. Biol. Sci. 6(14) (2003) 1223–1228.
DOI: 10.3923/pjbs.2003.1223.1228
Google Scholar
[42]
P. Palanisamy et al., Activity levels of phosphatases of the air-breathing catfish Mystus cavasius exposed to electroplating industrial effluent chromium, Biology and Medicine. 4(2) (2012) 60–64.
Google Scholar
[43]
С. Bakde, A. N. Poddar, Effect of steel plant effluent on acid and alkaline phosphatases of gills, liver and gonads of Cyprinus carpio Linn, International Journal of Environmental Sciences. 1(6) (2011) 1305–1316.
Google Scholar
[44]
R. Thirumavalavan, Effect of copper on carbonydrate metabolism fresh water fish, Catla catla, Asian Journal of Science and Technology. 5 (2010) 095–099.
Google Scholar
[45]
H. Jiang et al., Response of Acid and alkaline phosphatase activities to copper exposure and recovery in freshwater fish Carassius auratus gibelio var, Life Science Journal. 9(3) (2012) 233–245.
Google Scholar
[46]
G. Sreekala, S. Raghuprasad, G. Bela, Zutshi biochemical markers and histopathology of the target tissues of Labeo rohita reared in freshwater lakes of Bangalore, Karnataka, India, Journal of Research in Environmental Science and Toxicology. 2(2) (2013) 43–52.
Google Scholar
[47]
I. Valocky et al., Activity of alkaline phosphatase, acidic phosphatase and nonspecific esterase in the oviducts of puerperal ewes after exposure to polychlorinated biphenyls, Veterinarni Medicina. 52(5) (2007) 186–192.
DOI: 10.17221/2004-vetmed
Google Scholar
[48]
B. Jyothi, G. Narajan, Pesticide induced alterations of non-protein nitrogenous constituents in the serum of a freshwater catfish, Clarias batrachus (Linn.), Indian J. Exp. Biol. 38 (2000) 1058–1061.
Google Scholar
[49]
A. S. Fatma, M. S. Gad, Environmental pollution-induced biochemical changes in tissues of tilapia zillii, Solea Vulgaris and mugil carpito from lake Qarun, Egypt. Global Veterenaria. 2(6) (2008) 327–336.
Google Scholar
[50]
A. Sachar, S. Raina, Effect of inorganic pollutant (nitrate) on biochemical parameters of the fish, Aspidoparia Morar, International Journal of Innovative Research in Science, Engineering and Technology. 3(5) (2014) 12568–12573.
Google Scholar
[51]
M. Banaee, Adverse effect of insecticides on various aspects of fish's biology and physiology, in: S. Soloneski, M. Larramendy (Eds.), Insecticides-Basic and Other Applications Book, Published by InTech, Chapter 6, 2012, p.101–126.
DOI: 10.5772/30545
Google Scholar
[52]
M. Banaee, K. Ahmadi, Sub-lethal toxicity impacts of endosulfan on some biochemical parameters of the freshwater crayfish (Astacus leptodactylus), Research Journal of Environmental Sciences. 5(11) (2011) 827–835.
DOI: 10.3923/rjes.2011.827.835
Google Scholar
[53]
F. Aziz et al., Effect of fluoride exposure on key enzymes activity of proteincarbohydrate metabolism in gills of fresh water fish tilapia mossambica, Keenjhar lake, Thatta, Sindh, Pakistan, Int. Res. J. Environment Sci. 2(8) (2013) 24–27.
Google Scholar
[54]
R.M. Ganeshwade, P.B. Rokade, S.R. Sonwane, Impact of dimethoate on protein content in the freshwater fish Puntius ticto (Ham), The Bioscan. 7(1) (2012) 153–155.
Google Scholar
[55]
H. Bhattacharya, L. Lun, R.D. Gomez, Biochemical effects to toxicity of CCl4 on rosy barbs (Puntius conchonius), J. Our Nat. 3 (2005) 10–25.
DOI: 10.3126/on.v3i1.330
Google Scholar
[56]
K. M. Adamu, O. Kori-Siakpere, Effects of sublethal concentrations of tobacco (Nicotiana tobaccum) leafdust on some biochemical parameters of hybrid catfish (Clarias gariepinus and Heterobranchus bidorsalis), Brazilian Archives of Biology and Technology. 54(1) (2011) 183–196.
DOI: 10.1590/s1516-89132011000100023
Google Scholar
[57]
S. B. Mushigeri, R. C. Kuri, Blood glucose and glycogen levels as indicators of stress in the freshwater, Journal of Ecotoxicology and Environmental Monitoring. 15 (2005) 1–5.
Google Scholar
[58]
S. S. Vutukuru, Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemical profiles of the Indian major carp, Labeo rohita, Int. J. Environ. Res. Public Health. 2(3) (2005) 456–457.
DOI: 10.3390/ijerph2005030010
Google Scholar
[59]
V. Rajamanickam, N. Muthuswamy, Effect of heavy metals induced toxicity on metabolic biomarkers in common carp (Cyprinus Carpio L.), Mj. Int. J. Sci. Tech. 2(1) (2008) 192–200.
Google Scholar
[60]
E.O. Oruc, N. Uner, Effects of 2, 4 Diamin on some parameters of protein and carbohydrate metabolisms in the serum, muscle and liver of Cyprinus carpio, Life Science Journal. 9(3) (2012) 267– 272.
DOI: 10.1016/s0269-7491(98)00206-1
Google Scholar
[61]
A. Yadav et al., Fertilizer industry effluent induced biochemical changes in fresh water teleost, Channa striatus (Bloch), Bull. Environ. Contam. Toxicol. 79(6) (2007) 588–595.
DOI: 10.1007/s00128-007-9294-4
Google Scholar
[62]
K. George et al., Biochemical changes in liver and muscle of the cichlid, Oreochromis mossambicus (Peters, 1852) exposed to sub-lethal concentration of mercuric chloride, Indian J. Fish. 59(2) (2012) 147–152.
Google Scholar
[63]
H. M. Neft, Use of biochemical measurement todetect pollutant-mediated damage to fish, ASTM. Spec Tech. Publ. 854 (1985) 155–183.
Google Scholar
[64]
J.A. Almeida et al., The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination, Environ Int. 27 (2002) 673–679.
DOI: 10.1016/s0160-4120(01)00127-1
Google Scholar
[65]
N. Indra, P.R. Karpagaganapathy, V. Meenakshi, Succinic dehydrogenase activity in tissues of male tree frog, Polypedates maculatus (Gray) exposed to median lethal dose of phosphamidon, Environment & Ecology. 17(1) (1999) 14–17.
Google Scholar
[66]
T.G. More, R.A. Rajput, N.N. Bandela, Effect of heavy metal on enzyme succinic dehydrogenase of freshwater bivalve, Lamellidenus marginalis, Poll. Res. 24 (2005) 675–679.
Google Scholar
[67]
A.A. Ivanov et al., Physiological and biochemical adaptation of river crayfish (Astacus astacus) with a change in the mineralization of the aquatic environment, Izv TCAAU. 3 (2011) 120–128. (In Russian)
Google Scholar
[68]
N.N. Nemova, Mechanisms of biochemical adaptation in aquatic organisms, Ecological and Evolutionary Aspects. (2010) 198–214. (In Russian)
Google Scholar
[69]
R. Molina et al., Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions, Toxicon. 46 ( 2005) 725–735.
DOI: 10.1016/j.toxicon.2005.07.012
Google Scholar
[70]
H. Nchumbeni et al., Effect of arsenic on the enzymes of the rohu carp, Labeo rohita (Hamilton, 1822), The Raffles Bull. of Zoology supplement. 14 (2007) 17–19.
Google Scholar