[1]
A.A. Protasov, Aquatic techno-ecosystems and their place in biosphere, Journal of Siberian Federal University. Biology. 4(6) (2013) 405–423. (In Russian)
Google Scholar
[2]
A.L. McLoon et al., Tracing the domestication of a biofilm forming bacterium, J. Bacteriol. 193 (2011) 2027–2034.
DOI: 10.1128/jb.01542-10
Google Scholar
[3]
A.S. Labinskaya, Ye.G. Volina (Eds.), Manual on medical microbiology. General and sanitary microbiology. Book 1, Binom, Moscow, Russia, 2008. (in Russian)
Google Scholar
[4]
A.Y. Zvyagintsev, O.P. Poltarukha, S.I. Maslennikov, Fouling on technical water supply marine systems and protection method analysis of fouling on water conduits (Analytical review), Voda: Khimiya i Ekologiya. 1 (2015) 30–51. (in Russian)
Google Scholar
[5]
D. Romero et al., Amyloid fibers provide structural integrity to Bacillus subtilis biofilms, Proc. Natl. Acad. Sci. USA. 107 (2010) 2230–2234.
DOI: 10.1073/pnas.0910560107
Google Scholar
[6]
E.A. Shank, R. Kolter, Extracellular signaling and multicellularity in Bacillus subtilis, Curr. Opin. Microbiol. 14 (2011) 741–747.
DOI: 10.1016/j.mib.2011.09.016
Google Scholar
[7]
E.Y. Trizna et al., Thio derivatives of 2(5H)-furanone as inhibitors against Bacillus subtilis biofilms, Acta Naturae. 7(2) (2015) 110–116. (in Russian)
DOI: 10.32607/20758251-2015-7-2-102-107
Google Scholar
[8]
F. Yan et al., The comER gene plays an important role in biofilm formation and sporulation in both Bacillus subtilis and Bacillus cereus, Front. Microbiol. 7 (2016) Article 1025.
DOI: 10.3389/fmicb.2016.01025
Google Scholar
[9]
H. Vlamakis et al., Sticking together: Building a biofilm the Bacillus subtilis way, Nat. Rev. Microbiol. 11(3) (2013) 157–168.
DOI: 10.1038/nrmicro2960
Google Scholar
[10]
I.V. Burkovskiy, Marine biogeocenology. Organization of communities and ecosystems, Partnership of Scientific Publications KMK, Moscow, Russia, 2006. (in Russian)
Google Scholar
[11]
J. Dervaux, J.C. Magniez, A. Libchaber, On growth and form of Bacillus subtilis biofilms, Interface Focus. 4 (2014) 20130051.
DOI: 10.1098/rsfs.2013.0051
Google Scholar
[12]
J.E. Cassat, M.S. Smeltzer, C.Y. Lee, Investigation of biofilm formation in clinical isolates of Staphylococcus aureus, in: J. Yinduo (Ed.), Methicillin-resistant Staphylococcus aureus (MRSA). Protocols, Methods in Molecular Biology, Humana press, St. Paul, 2014.
DOI: 10.1385/1-59745-468-0:127
Google Scholar
[13]
J.G. Holt et al. (Eds.), Bergey's manual of determinative bacteriology, Williams & Wilkins, Baltimore, 1994.
Google Scholar
[14]
K. Kobayashi, Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes, J. Bacteriol. 189 (13) (2007) 4920–4931.
DOI: 10.1128/jb.00157-07
Google Scholar
[15]
L.S. Cairns, L. Hobley, N.R. Stanley-Wall, Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms, Mol. Microbiol. 93 (2014) 587–598.
DOI: 10.1111/mmi.12697
Google Scholar
[16]
L.V. Didenko et al., Morphological features of biofilms in potentially dangerous water systems, Epidemiologiya i infektsionnyye bolezni. 1 (2012) 15–20. (in Russian)
Google Scholar
[17]
M. Asallya et al., Localized cell death focuses mechanical forces during 3D patterning in a biofilm, PNAS. 109 (46) (2012) 18891–18896.
DOI: 10.1073/pnas.1212429109
Google Scholar
[18]
N.A. Logan, R.C.W. Berkeley, Identification of Bacillus strains using the API system, J. Gen. Microbiol. 130 (1984) 1871–1882.
DOI: 10.1099/00221287-130-7-1871
Google Scholar
[19]
P.B. Beauregard et al., Bacillus subtilis biofilm induction by plant polysaccharides, Proc. Natl. Acad. Sci. USA. 110 (2013) E1621–E1630.
Google Scholar
[20]
S. Arnaouteli, C.E. MacPhee, N.R. Stanley-Wall, Just in case it rains: Building a hydrophobic biofilm the Bacillus subtilis way, Curr. Opin. Microbiol. 34 (2016) 7–12.
DOI: 10.1016/j.mib.2016.07.012
Google Scholar
[21]
S. Aryal, Biochemical test and identification of Bacillus subtilis, 2016. Available: www.microbiologyinfo.com/biochemical-test-and- identification-of-bacillus-subtilis/.
Google Scholar
[22]
S.S. Branda et al., Fruiting body formation by Bacillus subtilis, Proc. Natl. Acad. Sci. USA. 98 (2001) 11621–11626.
DOI: 10.1073/pnas.191384198
Google Scholar
[23]
T. Gao et al., Alternative modes of biofilm formation by plant-associated Bacillus cereus, Microbiology Open. 4 (2015) 452–464.
Google Scholar
[24]
W. Ma et al., Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides, npj Biofilms and Microbiomes. 3 (2017) 4.
DOI: 10.1038/s41522-017-0013-6
Google Scholar
[25]
Y. Chai et al., Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis, mBiо 3(4) (2012) e00184-12.
Google Scholar
[26]
Y. Chen et al., Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation, Environ. Microbiol. 15 (2013) 848–864.
DOI: 10.1111/j.1462-2920.2012.02860.x
Google Scholar
[27]
Z. Hong et al., Initial adhesion of Bacillus subtilis on soil minerals as related to their surface properties, Eur. J. Soil Sci. 63 (2012) 457–466.
DOI: 10.1111/j.1365-2389.2012.01460.x
Google Scholar