[1]
J. Singh, N. Batra, R.C. Sobti, Serine alkaline protease from a newly isolated Bacillus sp. SSR1, Process. Chem. 36(8) (2001) 781-785.
DOI: 10.1016/s0032-9592(00)00275-2
Google Scholar
[2]
S.-L. Wang et al., Two novel surfactant-stable alkaline proteases from Vibrio fluvialis TKU005 and their applications, Enzyme Microb. Technol. 40(5) (2007) 1213-1220.
DOI: 10.1016/j.enzmictec.2006.09.012
Google Scholar
[3]
K.M. Sharma et al., Microbial alkaline proteases: Optimization of production parameters and their properties, Genet. Eng. Biotechnol. J. 15(1) (2017) 115-126.
Google Scholar
[4]
S. Guleria et al., Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere, J. Basic Microbiol. 56(2) (2015) 138-152.
DOI: 10.1002/jobm.201500341
Google Scholar
[5]
M. Baweja et al., An alkaline protease from Bacillus pumilus MP 27: Functional analysis of its binding model toward its applications as detergent additive, Front. Microbiol. 7 (2016) 1195.
DOI: 10.3389/fmicb.2016.01195
Google Scholar
[6]
H. Tebyanian et al., Antimicrobial activity of some Lactobacillus species against intestinal pathogenic bacteria, International Letters of Natural Sciences. 65 (2017) 10-15.
DOI: 10.56431/p-c620g7
Google Scholar
[7]
F. Uyar, Z. Baysal, Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus sp. under solid state fermentation, Process. Chem. 39(12) (2004) 1893-1898.
DOI: 10.1016/j.procbio.2003.09.016
Google Scholar
[8]
N. Yang et al., Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes, Enzyme Microb Technol. 26(5-6) (2000) 406-413.
DOI: 10.1016/s0141-0229(99)00164-7
Google Scholar
[9]
H. Yazdi et al., The Effects of some physicochemical stresses on Escherichia coli O157:H7 as clinical pathogenic bacteria, Int. J. Agric. Biol. 18(06) (2016) 1237-1241.
DOI: 10.17957/ijab/15.0237
Google Scholar
[10]
P. Zarparvar et al., Isolation and identification of culturable halophilic bacteria with producing hydrolytic enzyme from Incheh Broun hypersaline wetland in Iran, Cell. Mol. Biol. (Noisy-le-grand). 62(12) (2016) 31-36.
Google Scholar
[11]
N. Bhaskar et al., Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities, Bioresour. Technol. 98(14) (2007) 2758-2764.
DOI: 10.1016/j.biortech.2006.09.033
Google Scholar
[12]
H. Gençkal, Studies on alkaline protease production from Bacillus sp., Master's thesis, İzmir Institute of Technology, 2004.
Google Scholar
[13]
C.G. Kumar, H. Takagi, Microbial alkaline proteases: from a bioindustrial viewpoint, Biotechnol. Adv. 17(7) (1999) 561-594.
Google Scholar
[14]
J. Chaloupka, Temperature as a factor regulating the synthesis of microbial enzymes, Microbiol. Sci. 2(3) (1985) 86-90.
Google Scholar
[15]
S. Ito et al., Enhanced production of extracellular enzymes by mutants of Bacillus that have acquired resistance to vancomycin and ristocetin, Agric. Biol. Chem. 55(9) (1991) 2387-2391.
DOI: 10.1271/bbb1961.55.2387
Google Scholar
[16]
H. Tebyanian et al., Isolation and identification of Mycoplasma synoviae from suspected ostriches by polymerase chain reaction, in Kerman Province, Iran, Jundishapur J. Microbiol. 7(9) (2014).
DOI: 10.5812/jjm.19262
Google Scholar
[17]
S. Mehrotra et al., The production of alkaline protease by a Bacillus species isolate, Bioresour. Technol. 67(2) (1999) 201-203.
Google Scholar
[18]
A.K. Mukherjee, S.K. Rai, A statistical approach for the enhanced production of alkaline protease showing fibrinolytic activity from a newly isolated Gram-negative Bacillus sp. strain AS-S20-I, N. Biotechnol. 28(2) (2011) 182-189.
DOI: 10.1016/j.nbt.2010.11.003
Google Scholar
[19]
C. Sandhya et al., Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state ferme ntation, Process. Chem. 40(8) (2005) 2689-2694.
DOI: 10.1016/j.procbio.2004.12.001
Google Scholar
[20]
Q.K. Beg, V. Sahai, R. Gupta, Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor, Process. Chem. 39(2) (2003) 203-209.
DOI: 10.1016/s0032-9592(03)00064-5
Google Scholar
[21]
A.K. Mukherjee, H. Adhikari, S.K. Rai, Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation, Biochem. Eng. J. 39(2) (2008) 353-361.
DOI: 10.1016/j.bej.2007.09.017
Google Scholar
[22]
H. Genckal, C. Tari, Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats, Enzyme Microb. Technol. 39(4) (2006) 703-710.
DOI: 10.1016/j.enzmictec.2005.12.004
Google Scholar
[23]
K.S.B. Naidu, K.L. Devi, Optimization of thermostable alkaline protease production from species of Bacillus using rice bran, Afr. J. Biotechnol. 4(7) (2005) 724-726.
DOI: 10.5897/ajb2005.000-3132
Google Scholar
[24]
S. Imtiaz, H. Mukhtar, H. Ikram ul, Production of alkaline protease by Bacillus subtilis using solid state fermentation, African Journal of Microbiology Research. 7(16) (2013) 1558-1568.
DOI: 10.5897/ajmr12.1845
Google Scholar