[1]
I. Bogut et al, Nutritional value of planktonic cladoceran Daphnia magna for common carp (Cyprinus carpio) fry feeding, Ribalstvo, 68 (2010) 2-12.
Google Scholar
[2]
T. John, Carotenoids: physical, chemical, and biological functions and properties, Edit. Landrum CRC Press, (2009) 568.
Google Scholar
[3]
M. Molinе at al., Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts, Methods Mol. Biol., 898 (2012) 275-283.
DOI: 10.1007/978-1-61779-918-1_19
Google Scholar
[4]
W. Stahl Bioactivity and protective effects of natural carotenoids, Biochimica et Biophysica Acta, 1740 (2005), 101-107.
DOI: 10.1016/j.bbadis.2004.12.006
Google Scholar
[5]
A. Catarina Guedes, Nutritional value and uses of microalgae in aquaculture, Aquaculture, (2014) 59-78.
Google Scholar
[6]
G.S. Minyuk, E.S. Chelebieva, I.N. Chubchikova, Special features in the secondary carotenogenesis Bracteacoccus minor (Chlorophyta) in a two-stage culture, Algologia. 25 (2015) 21-34. (In Russian).
DOI: 10.15407/alg25.01.021
Google Scholar
[7]
Y. Lemoine, B. Schoefs, Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress, Photosynth. Res. 106 (2010) 155-177.
DOI: 10.1007/s11120-010-9583-3
Google Scholar
[8]
S. Takaichi, Carotenoids in Algae: Distributions, Biosyntheses and Functions, Mar. Drugs, 15 (2011) 110-118.
Google Scholar
[9]
N. Mallick, F.H. Mohn, Reactive oxygen species: response of algal cells, Journal of Plant Physiology. 157 (2000) 183-193.
DOI: 10.1016/s0176-1617(00)80189-3
Google Scholar
[10]
S. Boussiba, Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response, Physiol. plant. 108 (2000) 111-117.
DOI: 10.1034/j.1399-3054.2000.108002111.x
Google Scholar
[11]
R.Y. Ma, F. Chen, Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp., Proc. Biochem. 36 (2001) 1175-1179.
DOI: 10.1016/s0032-9592(01)00157-1
Google Scholar
[12]
H.H. El-Baky, F.K. El Baz, G.S. El-Baroty, Production of antioxidant by the green alga Dunaliella salina, Int. J. Agri. Biol. 6 (2004) 49-57.
Google Scholar
[13]
L.M. Cheban, I.V. Malishchuk Induction of the secondary carotenogenesis in Desmodesmus armatus (Chod.) Hegew under conditions of two-stage cultivation, Ukr. Biochem. J., 88 (2016) 106. (In Ukrainian).
DOI: 10.56431/p-exxa5m
Google Scholar
[14]
D.R. Aliyeva, H.G. Babayev, I.V. Azizov, Activity and isoform content of peroxidase in Dunaliella saline cells under salt stress. Visnyk of Dnipropetrovsk University. Biology. Medicine. 18 (2010) 16-21. (In Russian).
DOI: 10.15421/021003
Google Scholar
[15]
D.R. Aliyeva, H.G. Babayev, I.V. Azizov, Effect of elevated NACL concentration to the photosynthesis and activity of catalase in Dunaliella salina cells, Visnyk of Dnipropetrovsk University. Biology. Ecology. 17 (2009) 3-9. (In Russian).
DOI: 10.15421/021003
Google Scholar
[16]
J. Kato, et al, Characterization of catalase from green algae Chlamydomonas reinhardtii, Journal of Plant Physiology, 151(1997) 262-268.
DOI: 10.1016/s0176-1617(97)80251-9
Google Scholar
[17]
N.D. Tupik, E.K. Zolotareva, Isoensyme spectrum в1'яцof Chlorophyta peroxidase, Algologia. 18 (2008) 123-133. (In Russian).
Google Scholar
[18]
L.M. Cheban, I.V. Malischuk, M.M. Marchenko, Cultivating Desmodesmus armatus (Chod.) Hegew. in recirculating aquaculture systems (RAS) waste water, Arch. Pol. Fish. 23 (2015) 155-162.
DOI: 10.1515/aopf-2015-0018
Google Scholar
[19]
F.D Caprio, et al, Two stage process of microalgae cultivation for starch and carotenoid production, Chemical Engineering Transactions. 16 (2016) 415-420.
Google Scholar
[20]
R.H. Hevorhyz, S.H. Shchepachyov Metodyka yzmerenyia plotnosty suspenzyy nyzshykh fototrofov na dlyne volnы sveta 750 nm. – Sevastopol: Otdel byotekhnolohyy y fytoresursov YnBIuM NAN Ukraynu, 2008. (In Russian).
Google Scholar
[21]
O.V. Vasilenko, et al, Energy and nitrogen metabolism in Chlorella vulgaris Beij. (Chlorophyta) the influence of sodium gypsum, Algologia. 24 (2014) 297-301. (In Ukrainian).
Google Scholar
[22]
O.H. Lowry, et al, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265-275.
Google Scholar
[23]
A.A. Tammam, E.M. Fakhry, M. El-Sheekh, Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta, African Journal of Biotechnology 10(19) (2011) 3795-3808.
Google Scholar
[24]
M. Zhang, et al, Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera, South African Journal of Botany, 85 (2013) 1-9.
DOI: 10.1016/j.sajb.2012.11.005
Google Scholar
[25]
A. Caverzan et al., Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection, Genet Mol Biol. 35 (2012) 1011-1019.
DOI: 10.1590/s1415-47572012000600016
Google Scholar
[26]
A. Sofo, et al, Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses, Int. J. Mol. Sci. 16 (2015) 13561-13578.
DOI: 10.3390/ijms160613561
Google Scholar