Reaction of Cells Desmodesmus armatus (Chod.) Hegew. on the Induction of Carotynogenesis

Article Preview

Abstract:

Various studies of the components of the antioxidant protection system of microalgae D. armatus under the influence of osmotic stress and active forms of oxygen will allow to develop methods for controlling carotenogenesis in a given culture and to obtain carotenoid enriched feed for zooplankton. These studies made it possible to evaluate the activity of catalase, peroxidase enzymes in cells that are cultured under the induction of carotenogenesis by free radical oxidation promoters and osmotic stress on the background of physiological changes. It is established that under these conditions, there is an increase in volumes and aggregation of vegetative cells. At the same time, the amount of biomass remains at the level of the first day of inductors application. Against the background of a decrease in growth activity, a decrease in the number of metabolically active cells in cytochrome oxidase was observed. It is also shown that, when iron sulfate is introduced with hydrogen peroxide and sodium chloride against the background of enhanced carotenogenesis, antioxidant systems are activated by increasing the activity of catalase and peroxidase. Under such conditions, it is possible to achieve increased production of carotenoids in Desmodesmus armatus culture.

Info:

* - Corresponding Author

[1] I. Bogut et al, Nutritional value of planktonic cladoceran Daphnia magna for common carp (Cyprinus carpio) fry feeding, Ribalstvo, 68 (2010) 2-12.

Google Scholar

[2] T. John, Carotenoids: physical, chemical, and biological functions and properties, Edit. Landrum CRC Press, (2009) 568.

Google Scholar

[3] M. Molinе at al., Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts, Methods Mol. Biol., 898 (2012) 275-283.

DOI: 10.1007/978-1-61779-918-1_19

Google Scholar

[4] W. Stahl Bioactivity and protective effects of natural carotenoids, Biochimica et Biophysica Acta, 1740 (2005), 101-107.

DOI: 10.1016/j.bbadis.2004.12.006

Google Scholar

[5] A. Catarina Guedes, Nutritional value and uses of microalgae in aquaculture, Aquaculture, (2014) 59-78.

Google Scholar

[6] G.S. Minyuk, E.S. Chelebieva, I.N. Chubchikova, Special features in the secondary carotenogenesis Bracteacoccus minor (Chlorophyta) in a two-stage culture, Algologia. 25 (2015) 21-34. (In Russian).

DOI: 10.15407/alg25.01.021

Google Scholar

[7] Y. Lemoine, B. Schoefs, Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress, Photosynth. Res. 106 (2010) 155-177.

DOI: 10.1007/s11120-010-9583-3

Google Scholar

[8] S. Takaichi, Carotenoids in Algae: Distributions, Biosyntheses and Functions, Mar. Drugs, 15 (2011) 110-118.

Google Scholar

[9] N. Mallick, F.H. Mohn, Reactive oxygen species: response of algal cells, Journal of Plant Physiology. 157 (2000) 183-193.

DOI: 10.1016/s0176-1617(00)80189-3

Google Scholar

[10] S. Boussiba, Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response, Physiol. plant. 108 (2000) 111-117.

DOI: 10.1034/j.1399-3054.2000.108002111.x

Google Scholar

[11] R.Y. Ma, F. Chen, Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp., Proc. Biochem. 36 (2001) 1175-1179.

DOI: 10.1016/s0032-9592(01)00157-1

Google Scholar

[12] H.H. El-Baky, F.K. El Baz, G.S. El-Baroty, Production of antioxidant by the green alga Dunaliella salina, Int. J. Agri. Biol. 6 (2004) 49-57.

Google Scholar

[13] L.M. Cheban, I.V. Malishchuk Induction of the secondary carotenogenesis in Desmodesmus armatus (Chod.) Hegew under conditions of two-stage cultivation, Ukr. Biochem. J., 88 (2016) 106. (In Ukrainian).

DOI: 10.56431/p-exxa5m

Google Scholar

[14] D.R. Aliyeva, H.G. Babayev, I.V. Azizov, Activity and isoform content of peroxidase in Dunaliella saline cells under salt stress. Visnyk of Dnipropetrovsk University. Biology. Medicine. 18 (2010) 16-21. (In Russian).

DOI: 10.15421/021003

Google Scholar

[15] D.R. Aliyeva, H.G. Babayev, I.V. Azizov, Effect of elevated NACL concentration to the photosynthesis and activity of catalase in Dunaliella salina cells, Visnyk of Dnipropetrovsk University. Biology. Ecology. 17 (2009) 3-9. (In Russian).

DOI: 10.15421/021003

Google Scholar

[16] J. Kato, et al, Characterization of catalase from green algae Chlamydomonas reinhardtii, Journal of Plant Physiology, 151(1997) 262-268.

DOI: 10.1016/s0176-1617(97)80251-9

Google Scholar

[17] N.D. Tupik, E.K. Zolotareva, Isoensyme spectrum в1'яцof Chlorophyta peroxidase, Algologia. 18 (2008) 123-133. (In Russian).

Google Scholar

[18] L.M. Cheban, I.V. Malischuk, M.M. Marchenko, Cultivating Desmodesmus armatus (Chod.) Hegew. in recirculating aquaculture systems (RAS) waste water, Arch. Pol. Fish. 23 (2015) 155-162.

DOI: 10.1515/aopf-2015-0018

Google Scholar

[19] F.D Caprio, et al, Two stage process of microalgae cultivation for starch and carotenoid production, Chemical Engineering Transactions. 16 (2016) 415-420.

Google Scholar

[20] R.H. Hevorhyz, S.H. Shchepachyov Metodyka yzmerenyia plotnosty suspenzyy nyzshykh fototrofov na dlyne volnы sveta 750 nm. – Sevastopol: Otdel byotekhnolohyy y fytoresursov YnBIuM NAN Ukraynu, 2008. (In Russian).

Google Scholar

[21] O.V. Vasilenko, et al, Energy and nitrogen metabolism in Chlorella vulgaris Beij. (Chlorophyta) the influence of sodium gypsum, Algologia. 24 (2014) 297-301. (In Ukrainian).

Google Scholar

[22] O.H. Lowry, et al, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265-275.

Google Scholar

[23] A.A. Tammam, E.M. Fakhry, M. El-Sheekh, Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta, African Journal of Biotechnology 10(19) (2011) 3795-3808.

Google Scholar

[24] M. Zhang, et al, Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera, South African Journal of Botany, 85 (2013) 1-9.

DOI: 10.1016/j.sajb.2012.11.005

Google Scholar

[25] A. Caverzan et al., Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection, Genet Mol Biol. 35 (2012) 1011-1019.

DOI: 10.1590/s1415-47572012000600016

Google Scholar

[26] A. Sofo, et al, Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses, Int. J. Mol. Sci. 16 (2015) 13561-13578.

DOI: 10.3390/ijms160613561

Google Scholar