Response of Salt-Stressed Common Bean Plant Performances to Foliar Application of Phosphorus (MAP)

Article Preview

Abstract:

The study objective is to evaluate the effect of mono-ammonuim phosphate (MAP; 0, 10, and 20 mM) applied as foliar application on the growth traits, green and dry yields characteristics, leaf photosynthetic pigments, chlorophyll fluorescence, and leaf contents of nutrients of common bean (Phaseolus vulgaris L., cv. “Bronco”) plants grown under saline soil conditions. To perform this objective, two field trials were conducted at the Experimental Farm of Faculty of Agriculture, Fayoum University during the 2016 and 2017 summer seasons. The obtained results showed that, Na+ content was significantly declined, while the all other tested parameters such as growth characteristics (i.e., shoot length, number of leaves per plant, area of leaves per plant, and shoot fresh and dry weights), yield characteristics of green pods and dry seeds (i.e., average pod weight, number of pods per plant, pods weight per plant, dry seed weight per plant and 100-seed weight), leaf photosynthetic pigments (i.e., total chlorophylls, total carotenoids) contents and leaf chlorophyll fluorescence (i.e., Fv/Fm and PI), leaf contents of N, P, K+, and Ca2+, and the ratios of K+/Na+, Ca2+/Na+ and K++Ca2+/Na+ were significantly increased by the two levels (i.e., 10 and 20 mM) of MAP compared to the controls (without MAP). The two MAP levels conferred the same results for most of the all tested parameters; particularly growth and yields characteristics, with some exceptions. Therefore, results of this study recommend using 10 mM MAP as foliar application to optimize the common bean performances in saline soils. Keywords: Common beans, Salinity, Phosphorus, Plant performance, Antioxidant defense systems, Photosynthesis, Water relations.

Info:

* - Corresponding Author

[1] W.J. Broughton, G. Hernander, B. Blair, S. Beebe, P. Gepts, J. Vanderleyden, Beans (Phaseolus spp.) – model food legumes, Plant and Soil. 252 (2003) 55–128.

DOI: 10.1023/a:1024146710611

Google Scholar

[2] C.P. Vance, Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources, Plant Physiology. 127 (2001) 390–397.

DOI: 10.1104/pp.010331

Google Scholar

[3] M.E. Isaac, J.M. Harmand, J.J. Drevon, Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions, Journal of Plant Physiology. 168 (2011) 776–781.

DOI: 10.1016/j.jplph.2010.10.011

Google Scholar

[4] X.W. Wang, B. Vinocur, A. Altman, Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance, Planta. 218 (2003) 1–14.

DOI: 10.1007/s00425-003-1105-5

Google Scholar

[5] E.V. Maas, G.J. Hoffman, Crop salt tolerance–Current assessment, Journal of the Irrigation and Drainage Division – PUBDB. 103(2) (1977) 115–134.

DOI: 10.1061/jrcea4.0001137

Google Scholar

[6] A. Bargaz, R.M.A. Nassar, M.M. Rady, M.S. Gaballah, S.M. Thompson, M. Brestic, U. Schmidhalter, M.T. Abdelhamid, Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency, Journal of Agronomy and Crop Science. 202 (2016) 497–507.

DOI: 10.1111/jac.12181

Google Scholar

[7] M.M. Rady, T.A. Abd El-Mageed, H.A. Abdurrahman, A.H. Mahdi, Humic acid application improves field performance of cotton (gossypium barbadense L.) under saline conditions, Journal of Animal and Plant Science. 26(2) (2016) 487–493.

Google Scholar

[8] M.M. Rady et al., Growth, heavy metal status and yield of salt-stressed wheat (Triticum aestivum L.) plants as affected by the integrated application of bio-, organic and inorganic nitrogen-fertilizers, Journal of Applied Botany and Food Quality. 89 (2016b) 21–28.

Google Scholar

[9] M.M. Rady, R.S. Taha, A.H.A. Mahdi, Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress, South African Journal of Botany. 102 (2016) 221–227.

DOI: 10.1016/j.sajb.2015.07.007

Google Scholar

[10] M.I. Khan, A. Mughal, N. Iqbal, N.A. Khan, Potentiality of sulphur containing compounds in salt stress tolerance. In: Parvaiz, A., Azooz, M. M., Prasad, M. N. V. (Eds.). Ecophysiology and responses of plants under salt stress. Chapter 17 (2013) p: 443–472, Springer.

DOI: 10.1007/978-1-4614-4747-4_17

Google Scholar

[11] K. Asada, The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons, Annual Review of Plant Physiology and Plant Molecular Biology. 50 (1999) 601–639.

DOI: 10.1146/annurev.arplant.50.1.601

Google Scholar

[12] S.A. Orabi, M.T. Abdelhamid, Protective role of a-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system, Journal of the Saudi Society of Agricultural Sciences. 15 (2016) 145–154.

DOI: 10.1016/j.jssas.2014.09.001

Google Scholar

[13] Kh.A. Hemida, A.Z.A. Eloufey, M.A. Seif El-Yazal, M.M. Rady, Integrated effect of potassium humate and α-tocopherol applications on soil characteristics and performance of Phaseolus vulgaris plants grown on a saline soil, Archives of Agronomy and Soil Science. 63 (2017) 1556–1571.

DOI: 10.1080/03650340.2017.1292033

Google Scholar

[14] . Yasar, S. Kusvuran, S. Ellialtioǧlu, Determination of anti-oxidant activities in some melon (Cucumis melo L.) varieties and cultivars under salt stress, The Journal of Horticultural Science and Biotechnology. 81 (2006) 627–630.

DOI: 10.1080/14620316.2006.11512115

Google Scholar

[15] B. Yildirim, F. Yaser, T. Ozpay, D. TurkOzu, O. Terziolu, A. Tamkoc, Variations in response to salt stress among field pea genotypes (Pisum sativum sp. arvense L.), Journal of Animal and Veterinary Advances. 7 (2008) 907–910.

Google Scholar

[16] M. Mishra, P.K. Mishra, U. Kumar, V. Prakash, NaCl phytotoxicity induces oxidative stress and response of antioxidant system in Cicer arietinum L. cv. Abrodbi, Botany Research International. 2 (2009) 74–82.

Google Scholar

[17] S.A. Orabi, B.B. Mekki, F.A. Sharara, Alleviation of adverse effects of salt stress on faba bean (Vicia faba L.) plants by exogenous application of salicylic acid, World Applied Sciences Journal. 27 (2013) 418–427.

Google Scholar

[18] T.A. Cuin, Y. Tian, S.A. Betts, R. Chalmandrier, S. Shabala, Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions, Functional Plant Biology. 36 (2009) 1110–1119.

DOI: 10.1071/fp09051

Google Scholar

[19] Y. Hu, U. Schmidhalter, Drought and salinity: a comparison of their effects on the mineral nutrition of plants, Journal of Plant Nutrition and Soil Science. 168 (2005) 541–549.

DOI: 10.1002/jpln.200420516

Google Scholar

[20] C.P. Vance, C. Uhde-Stone, D.L. Allan, Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource, New Phytologist. 157 (2003) 423–447.

DOI: 10.1046/j.1469-8137.2003.00695.x

Google Scholar

[21] A. Cerda, F.T. Bingham, G. Hoffman, Interactive effect of salinity and phosphorus on sesame, Soil Science Society of America Journal. 41 (1977) 915–918.

DOI: 10.2136/sssaj1977.03615995004100050021x

Google Scholar

[22] B. L'taief, S. Bouaziz, Z. Mainassara, H. Ralf, C. Molina, S. Beebe, P. Winter, G. Kahl, J.J. Drevon, M. Lachaâl, Genotypic variability for tolerance to salinity and phosphorus deficiency among N2-dependent recombinant inbred lines of Common Bean (Phaseolus vulgaris), African Journal of Microbiology Research. 6 (2012) 4205–4213.

DOI: 10.5897/ajmr10.720

Google Scholar

[23] A.I. Page, R.H. Miller, D.R. Keeney, Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties. 2nd Ed (1982). American Society of Agronomy, Madison, Wisconsin, USA.

Google Scholar

[24] A. Klute, Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. 2nd Ed., Wisconsin, USA: American Society of Agronomy Madison, 1986.

DOI: 10.1002/gea.3340050110

Google Scholar

[25] W.C. Dahnke, D.A. Whitney, Measurement of soil salinity. In: Dahnke, W. C. (Ed.). Recommended Chemical Soil Test Procedures for the North Central Region, North Central Regional Publication 221, North Dakota Agricultural Experiment Station Bulletin. 499 (1988) 32–34.

Google Scholar

[26] A.A.A. Mekded, M.M. Rady, Response of Beta vulgaris L. to nitrogen and micronutrients in dry environment, Plant, Soil and Environment. 62(1) (2016) 23–29.

DOI: 10.17221/631/2015-pse

Google Scholar

[27] R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop evapotranspiration guidelines for computing crop water requirements, Irrigation and Drainage. Paper 56 (1998), FAO, Rome, p.300.

Google Scholar

[28] M.T. Abdelhamid, M.M. Rady, A.Sh. Osman, M.S. Abdalla, Exogenous application of proline alleviates salt induced oxidative stress in Phaseolus vulgaris L. plants, The Journal of Horticultural Science & Biotechnology. 88 (2013) 439–446.

DOI: 10.1080/14620316.2013.11512989

Google Scholar

[29] A.R. Welburn, H. Lichtenthaler, Formulae and program to determine total carotenoids and chlorophylls a and b leaf extracts in different solvents, in: C. Sybesma (Ed.), Advances in photosynthesis research. 2 (1984) 9–12.

DOI: 10.1007/978-94-017-6368-4_3

Google Scholar

[30] K. Maxwell, G.N. Johnson, Chlorophyll fluorescence–a practical guide, Journal of Experimental Botany. 51 (2000) 659–668.

DOI: 10.1093/jexbot/51.345.659

Google Scholar

[31] A.J. Clark, W. Landolt, J.B. Bucher, R.J. Strasser, Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index, Environmental Pollution. 109 (2000) 501–507.

DOI: 10.1016/s0269-7491(00)00053-1

Google Scholar

[32] A.R. Hafez, D.S. Mikkelsen, Colorimetric determination of nitrogen for evaluating the nutritional status of rice, Communications in Soil Science and Plant Analysis. 12 (1981) 61–69.

DOI: 10.1080/00103628109367127

Google Scholar

[33] C.S. Piper, Soil and plant analysis, Inter. Sci. Inc. Nc. USA (1947).

Google Scholar

[34] M.L. Jackson, Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd, New Delhi, India, 1967, p.144–197, 326–338.

Google Scholar

[35] H.D. Chapman, P.F. Pratt, Methods of Analysis for Soil, Plants and Water. University of California, Division of Agricultural Science, Berkeley, CA, USA, 1961, p.56–63.

Google Scholar

[36] M. Lachica, A. Aguilar, J. Yanez, Analisis Foliar. Métodos Utilizados enla EstaciLn Experimental del Zaidin, Anales de Edafologia y Agrobiologia, 1973, p.1033–1047.

Google Scholar

[37] K.A. Gomez, A.A. Gomez, Statistical Analysis Procedures for Agricultural Research. John Wiley and Sons, New York, NY, USA, 1984, pp: 25–30.

Google Scholar

[38] M.M. Rady, B.C. Varma, S.M. Howladar, Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract, Scientia Horticulturae. 162 (2013) 63–70.

DOI: 10.1016/j.scienta.2013.07.046

Google Scholar

[39] W.M. Semida, R.S. Taha, M.T. Abdelhamid, M.M. Rady, Foliar-applied α-tocopherol enhances salt-tolerance in Vicia faba L. plants grown under saline conditions, South African Journal of Botany. 95 (2014) 24–31.

DOI: 10.1016/j.sajb.2014.08.005

Google Scholar

[40] W.M. Semida, T.A. Abd El-Mageed, S.M. Howladar, M.M. Rady, Foliar-applied α-tocopherol enhances salt-tolerance in onion plants by improving antioxidant defence system, Australian Journal of Crop Science. 10(7) (2016) 1835–2707.

DOI: 10.21475/ajcs.2016.10.07.p7712

Google Scholar

[41] L. Xiong, J.K. Zhu, Molecular and genetic aspects of plant responses to osmotic stress, Plant, Cell & Environment. 25 (2002) 131–139.

DOI: 10.1046/j.1365-3040.2002.00782.x

Google Scholar

[42] J.K. Zhu, Plant salt tolerance, Trends in Plant Science. 6 (2001) 66–71.

Google Scholar

[43] V. Parida, A.B. Das, Salt tolerance and salinity effects on plants: a review, Ecotoxicology and Environmental Safety. 60 (2005) 324–349.

DOI: 10.1016/j.ecoenv.2004.06.010

Google Scholar

[44] M. Juan, R.M. Rivero, L. Romero, J.M. Ruiz, Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars, Environmental and Experimental Botany. 54 (2005) 193–201.

DOI: 10.1016/j.envexpbot.2004.07.004

Google Scholar

[45] R.K. Sariam, K.V. Rao, G.C. Srivastava, Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration, Plant Science. 163 (2002) 1037–1046.

DOI: 10.1016/s0168-9452(02)00278-9

Google Scholar

[46] J. Cuartero, R. Fernández-Mu˜noz, Tomato and salinity, Scientia Horticulturae. 78 (1999) 83–125.

DOI: 10.1016/s0304-4238(98)00191-5

Google Scholar

[47] E. Cicek, F. Yilmaz, M. Yilmaz, Effect of N and NPK fertilizers on early field performance of narrow-leaved ash, Fraxinus angustifolia, Journal of Environmental Biology. 31(1‒2) (2010) 109‒114. PMID: 20648820.

Google Scholar

[48] E.A. Waraich, Z. Ahmad, R. Ahmad, Saifullah, M.Y. Ashraf, Foliar applied phosphorous enhanced growth, chlorophyll contents, gas exchange attributes and PUE in wheat (Triticum aestivum L.), Journal of Plant Nutrition. 38(12) (2015) 1929‒1943.

DOI: 10.1080/01904167.2015.1043377

Google Scholar

[49] A.Sh. Osman, M.M. Rady, Ameliorative effects of sulphur and humic acid on the growth, antioxidant levels and yields of pea (Pisum sativum L.) plants grown in reclaimed saline soil, The Journal of Horticultural Science and Biotechnology. 87(6) (2012) 626–632.

DOI: 10.1080/14620316.2012.11512922

Google Scholar

[50] S.T. Pandey, P. Singh, P. Pandey, Site specific nutrient management for Withania somnifera at subtropical belt of Uttaranchal, International Journal of Agricultural Science. 2 (2006) 626‒628.

Google Scholar

[51] F. Zapata, A.R. Zaharah, Phosphate availability from phosphate rock and sewage sludge as influenced by addition of water soluble phosphate fertilizers, Nutrient Cycling in Agroecosystems. 63 (2002) 43‒48.

DOI: 10.1023/a:1020518830129

Google Scholar

[52] E. Epstein, A.J. Bloom, Mineral nutrition of plants: Principles and perspectives( Second Edition). Sunderland, MA: Sinauer Associates, Inc.; 2004.

Google Scholar

[53] S.M.S. Hudai, M. Sujauddin, S. Shafinat, M.S. Uddin, Effects of phosphorus and potassium addition on growth and nodulation of Dalbergia sissoo in the nursery, Journal of Forest Research. 18(4) (2007) 279‒282.

DOI: 10.1007/s11676-007-0056-2

Google Scholar

[54] R.K. Verma, P.K. Khatri, M. Bagde, H.D. Pathak, N.G. Totet, Effect of biofertilizer and phosphorous on growth of Dalbergia sissoo, Indian Journal of Forestry. 19(3) (1996) 244−246.

Google Scholar

[55] I. Cakmak, C. Hengeler, H. Marschner, Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency, Journal of Experimental Botany. 45(9) (1994) 1245–1250.

DOI: 10.1093/jxb/45.9.1245

Google Scholar

[56] M.G. Dawood, M.T. Abdelhamid, U. Schmidhalter, Potassium fertiliser enhances the salt-tolerance of common bean (Phaseolus vulgaris L.), The Journal of Horticultural Science and Biotechnology. 89 (2014) 185–192.

DOI: 10.1080/14620316.2014.11513067

Google Scholar

[57] M.M. Rady, M.Sh. Sadak, S.R. El-Lethy, E.M. Abd Elhamid, M.T. Abdelhamid, M.T. Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted sea water, The Journal of Horticultural Science and Biotechnology. 90(2) (2015) 195–202.

DOI: 10.1080/14620316.2015.11513172

Google Scholar

[58] L.I. Rong-hua, G.U.O. Pei-guo, M. Baum, S. Grando, S. Ceccarelli, Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley, Agricultural Sciences in China. 5 (2006) 751–757.

DOI: 10.1016/s1671-2927(06)60120-x

Google Scholar

[59] M.T. Abdelhamid, M. Shokr, M.A. Bekheta, Growth, root characteristics, and leaf nutrients accumulation of four faba bean (Vicia faba L.) cultivars differing in their broomrape tolerance and the soil properties in relation to salinity, Communications in Soil Science and Plant Analysis. 41 (2010) 2713–2728.

DOI: 10.1080/00103624.2010.518263

Google Scholar

[60] M.G. Dawood, H.A.A. Taie, R.M.A. Nassar, M.T. Abdelhamid, U. Schmidhalter, The changes induced in the physiological, biochemical and anatomical structure of Vicia faba by the exogenous application of proline under seawater stress, South African Journal of Botany. 93 (2014) 54–63.

DOI: 10.1016/j.sajb.2014.03.002

Google Scholar

[61] C.S.T. Daughtry, C.L. Walthall, M.S. Kim, E. Brown de Colstoun, J.E. McMurtrey, Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance, Remote Sensing of Environment. 74(2) (2000) 229‒239.

DOI: 10.1016/s0034-4257(00)00113-9

Google Scholar

[62] B. Bojovic, J. Stojanovic, Some wheat leaf characteristics in dependence of fertilization, Kragujevac Journal of Science. 28 (2006) 139‒146.

Google Scholar

[63] Shubhra, J. Dayal, C.L. Goswami, R. Munjal, Influence of phosphorus application on water relations, biochemical parameters and gum content in cluster bean under water deficit, Biologia Plantarum. 48(3) (2004) 445‒448.

DOI: 10.1023/b:biop.0000041101.87065.c9

Google Scholar

[64] S. Dutt, S.D. Sharma, P. Kumar, Inoculation of apricot seedlings with indigenous arbuscular mycorrhizal fungi in optimum phosphorus fertilization for quality growth attributes, Journal of Plant Nutrition. 36(1) (2013) 15‒31.

DOI: 10.1080/01904167.2012.732648

Google Scholar

[65] A. Celekli, M. Yavuzatmaca, H. Bozkurt, Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes, Bioresource Technology. 100(14) (2009) 3625‒3629.

DOI: 10.1016/j.biortech.2009.02.055

Google Scholar

[66] X.L. Liang, Y.C. Lin, H. Nian, L.X. Xie, The effect of low phosphorus stress on main physiological traits of different maize genotypes, Acta Agronomica Sinica. 31(5) (2005) 667‒669.

Google Scholar

[67] K.H. Kiarostami, R. Mohseni, A. Saboora, Biochemical changes of Rosmarinus officinalis under salt stress, Journal of Stress Physiology and Biochemistry. 6 (2010) 114–122.

Google Scholar

[68] M. Ashraf, P.J.C. Harris, Potential biochemical indicators of salinity tolerance in plants, Plant Science. 166 (2004) 3–16.

DOI: 10.1016/j.plantsci.2003.10.024

Google Scholar

[69] M.A. Gharsa, E. Parre, A. Debez, M. Bordenava, L. Richard, L. Leport, A. Bouchereau, A. Savoure, C. Abdelly, Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation, Journal of Plant Physiology. 165 (2008) 588–599.

DOI: 10.1016/j.jplph.2007.05.014

Google Scholar

[70] H. Marschner, Mineral Nutrition of Higher Plants. 2nd Ed. New York, NY, USA: Academic Press Publication, 1995, p.559–579.

Google Scholar

[71] Z. Noreen, M. Ashraf, N.A. Akram, Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.), Journal of Agronomy and Crop Science. 196 (2010) 273–285.

DOI: 10.1111/j.1439-037x.2010.00420.x

Google Scholar

[72] J.M. Lenis, M. Ellersieck, D.G. Blevins, D.A. Sleper, H.T. Nguyen, D. Dunn, J.D. Lee, J.G. Shannon, Differences in ion accumulation and salt tolerance among glycine accessions, Journal of Agronomy and Crop Science. 197 (2011) 302–310.

DOI: 10.1111/j.1439-037x.2011.00466.x

Google Scholar

[73] R. Munns, M. Tester, Mechanisms of salinity tolerance, Annual Review of Plant Biology. 59 (2008) 651–681.

DOI: 10.1146/annurev.arplant.59.032607.092911

Google Scholar

[74] P.J.C. Kuiper, Functioning of plant cell membrane under saline conditions: membrane lipid composition and ATPases. In: R.C. Staples, and G.H. Toenniessen, eds. Salinity Tolerance in Plant: Strategies for Crop Improvement, John Wiley and Sons, Inc., New York, NY, USA, 1984, p.77–91.

Google Scholar

[75] R.S. Malik, A.P. Gupta, S. Haneklaus, N. El-Bassam, Role of phosphorus (P) in inducing salt tolerance in sunflower, Landbauforschung Völkenrode. 49 (1999) 169–176.

Google Scholar

[76] S.R. Grattan, C.M. Grieve, Mineral nutrient acquision and response by plants in saline environment. In: M. Pessarakali, ed. Handbook of Plant and Crop Stress, Marcel Dekker, Inc., New York, NY, USA, 1993, p.203–266.

DOI: 10.1201/9780824746728.ch9

Google Scholar