Cyanobacteria and Glutathione Applications Improve Productivity, Nutrient Contents, and Antioxidant Systems of Salt-Stressed Soybean Plant

Article Preview

Abstract:

Salt stress restricts plant performance by disrupting various physio-biochemical processes like photosynthesis. Plants growing in saline substrates show deficiencies in absorption of some essential elements due to the presence of excessive sodium (Na+) in the rhizosphere, which antagonizes beneficial cations and causing toxicity in metabolism. Cyanobacteria (CB; a natural biofertilizer) play a fundamental role in building-up soil fertility, thus increasing plant performance. Glutathione (GSH) is a well-known antioxidant, which contributes to increase salt tolerance in the plant. This work was conducted as a pot experiment (sand culture) in 2017 to study the combined effect of CB, applied as seed inoculation, and GSH, applied as foliar spray, on growth, pods and seed yields, the contents of antioxidants, osmoprotectants, and nutrients, and the antioxidative enzymes activities of soybean (Glycine max L., cv. Giza 111) plants grown under saline conditions. At fourth leaf stage (21 days after sowing; DAS), CB-pretreated seedlings were supplemented with NaCl (150 mM) along with Hoagland′s nutrient solution, and at the same time seedlings were sprayed with 1 mM GSH. Samples were taken at 60 DAS to assess morphological, physio-biochemical and antioxidant defense systems attributes. Results showed that the integrative application of CB and GSH under saline conditions was effective in improving significantly the growth characteristics, yield components, photosynthetic efficiency (pigments contents and chlorophyll fluorescence), membrane stability index, relative water content, contents of soluble sugars, free proline, ascorbic acid, glutathione, α-tocopherol, and protein, and activities of superoxide dismutase, catalase, and guaiacol peroxidase. The contents of macronutrients (N, P, K+, and Ca2+) were also increased significantly in Glycine max plants compared to the stressed control. In contrast, Na+ content and electrolyte leakage were significantly reduced. Our results recommend using the combined CB (as seed inoculation) and GSH (as foliar spray) application for soybean plantss to grow well under saline conditions.

Info:

* - Corresponding Author

[1] F. A. Kummerow, M. M. Mahfouz, Q. Zhou, Trans fatty acids in partially hydrogenated soybean oil inhibit prostacyclin release by endothelial cells in presence of high level of linoleic acid, Prostaglandins & other Lipid Mediators, 84 (3-4) (2007) 138–153.

DOI: 10.1016/j.prostaglandins.2007.07.001

Google Scholar

[2] S. Perveen, M. Shahbaz, M. Ashraf, Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol, Pak. J. Bot. 43(2011) 2463-2468.

Google Scholar

[3] M. Shahbaz, M. Ashraf, F. Al-Qurainy, P. J. C. Harris, Salt tolerance in selected vegetables crops, Crit Rev. Plant Sci. 31(2012) 303-320.

DOI: 10.1080/07352689.2012.656496

Google Scholar

[4] Z. Noreen, M. Ashraf, Assessment of variation in antioxidative defense system in salt treated pea (Pisum sativum L ) cultivars and its putative use as salinity toterance markers, J. Plant Physiol, 166 (2009) 1764 – 1774.

DOI: 10.1016/j.jplph.2009.05.005

Google Scholar

[5] Z. Noreen, M. Ashraf, N. A. Akram, Salt-induced modulation in some key physio-biochemical processes and their use as selection criteria in potential vegetable crop pea (Pisum sativum L.), Crop Pasture Sci., 61(2010) 369 378.

DOI: 10.1071/cp09255

Google Scholar

[6] M. M. Rady, G. F. Mohamed, Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Scientia Horticulturae, 193 (2015)105–113.

DOI: 10.1016/j.scienta.2015.07.003

Google Scholar

[7] M. M. Rady, E. M. Desoky, A. S Elrys, M. S. Boghdady, Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? S. Afr. J. Bot. 121(2019a) 294–305.

DOI: 10.1016/j.sajb.2018.11.019

Google Scholar

[8] M. M. Rady, A. S. Elrys, M. F. Abo El-Maati, E. M. Desoky, Role of silicon and proline and their interplay in favor of increasing tolerance in Phaseolus vulgaris plants exposed to salt and cadmium toxicity, Ecotoxicol. Environ. Saf. (In Press), (2019b).

DOI: 10.1016/j.plaphy.2019.04.025

Google Scholar

[9] M. M. Rady, A. Kuşvuran, A. H. F. lharby, Y. Alzahrani, S. Kuşvuran, Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. Journal of Plant Growth Regulation, OnLine First, https://doi.org/10.1007/s00344-018-9860-5, (2019c).

DOI: 10.1007/s00344-018-9860-5

Google Scholar

[10] M. Ashraf, M. Afzal, R. Ahmed, F. Mujeeb, A. Sarwar, L. Ali, Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.), Plant Soil. 326 (1–2) (2010) l, 381–391.

DOI: 10.1007/s11104-009-0019-9

Google Scholar

[11] A. Saleem, M. Ashraf, N. A. Akram, Salt (NaCl)- induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.), J Agron Crop Sci. 197(2011) 202-213.

DOI: 10.1111/j.1439-037x.2010.00453.x

Google Scholar

[12] S.Safi-naz, M.M. Rady, (2015) Moringa oleifera leaf extract improves growth, physio-chemical attributes, antioxidant defence system and yields of salt-stressed Phaseolus vulgaris L. plants, Int J. ChemTech Res 8(11) (2015)120-134.

DOI: 10.1016/j.scienta.2015.07.003

Google Scholar

[13] N. A. Akram, M. Ashraf, F. Al-Qurainy, Aminolevulinic acid-induced changes in yield and seed-oil characteristics of sunflower (Helianthus annuus L.) plants under salt stress, Pak J Bot. 43 (2011) 2845-2852.

DOI: 10.1016/j.scienta.2012.05.007

Google Scholar

[14] M. M Rady, B. Varma, S. M. Howladar, Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract, Sci Hortic 162 (2013) 63-70.

DOI: 10.1016/j.scienta.2013.07.046

Google Scholar

[15] M. Ashraf, Biotechnological approach of improving plant salt tolerance using antioxidants as markers, Biotechnol Adv., 27(2009): 84 – 93.

DOI: 10.1016/j.biotechadv.2008.09.003

Google Scholar

[16] M. A Khan, Experimental assessment of salinity tolerance of Ceriops tagal seedling and sampling from the Indus delta, Pakistan Aquat. Bot., 70 (2001) 259-268.

DOI: 10.1016/s0304-3770(01)00160-7

Google Scholar

[17] H. Abbaspour, Effect of salt stress on lipid peroxidation, antioxidative enzymes and proline accumulation in pistachio plants, J. Med Plants Res., 6 (2012) 526-539.

DOI: 10.5897/jmpr11.1449

Google Scholar

[18] J. Cuartero, M. C. Bolarin, M. J. Asins, V. Moreno, Increasing salt tolerance in the tomato, J. Exp. Bot., 57 (5) (2006) 1045-1058.

Google Scholar

[19] T. Song, L. Martensson, T. Eriksson, W. Zheng, U. Rasmussen, Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian., China. The Federation of European Materials Societies Microbiology Ecology, 54 (2005) 131-140.

DOI: 10.1016/j.femsec.2005.03.008

Google Scholar

[20] M.M. Rady, S.S Taha, S. Kusvuran, Integrative application of cyanobacteria and antioxidants improves common bean performance under saline conditions, Sci. Hortic. 233(2018) 61-69.

DOI: 10.1016/j.scienta.2018.01.047

Google Scholar

[21] P. A. Rogar, P. A. Reynaud, Free-living Blue-green Algae in Tropical Soils, Martinus Nijh off publisher, La Hague, (1982).

Google Scholar

[22] Saadatnia, Riahi, Cyanobacteria in pollution control, Journal of science Industrial research, 55 (2009) 685-692.

Google Scholar

[23] R. Edwards, D. P. Dixon, V. Walbot, Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health, Trends Plant Sci., 5 (2000)193–198.

DOI: 10.1016/s1360-1385(00)01601-0

Google Scholar

[24] A. Pompella, A. Visvikis, A. Paolicchi, V. Tata, A. F. Casini, The changing faces of glutathione, a cellular protagonist, Bioch. Pharm. 66 (8) (2003) 1499–503.

DOI: 10.1016/s0006-2952(03)00504-5

Google Scholar

[25] K. Asada, M. Takahashi, Production and scavenging of active oxygen in photosynthesis, In Photoinhibition. Edited by Kyle, D.J., Osmond, C.B. and Arntzen, C.J. Elsevier, Amsterdam, (1987) 227–287.

Google Scholar

[26] G. Noctor, C. H. Foyer, Ascorbate and glutathione: keeping active oxygen under control, Annu. Rev. Plant Physiol. Plant Mol. Biol., 49 (1998) 249–279.

DOI: 10.1146/annurev.arplant.49.1.249

Google Scholar

[27] D. Hoagland, D. I. Arnon, The water culture method for growing plants without soil. California Agricultural Experiment Station Bulletin. 347 (1983)1-39.

Google Scholar

[28] D.I Arnon, Copper enzymes in isolated chloroplast Polyphenol-oxidase in Beta vulgaris L. Plant Physiol. 24 (1949)1–15.

DOI: 10.1104/pp.24.1.1

Google Scholar

[29] K. Maxwell G. N.Johnson, Chlorophyll fluorescence-a practical guide. J Exp Bot 51(345) (2000) 659-668.

DOI: 10.1093/jexbot/51.345.659

Google Scholar

[30] A. J. Clark, W. Landolt, J. B. Bucher, R. J. Strasser, Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index, Environmental Pollution, 109 (2000) 501–507.

DOI: 10.1016/s0269-7491(00)00053-1

Google Scholar

[31] L. S Bates, R. P. Waldeen, I. D. Teare, Rapid determination of free proline for water stress studies, Plant Soil, 39 (1973) 205–207.

DOI: 10.1007/bf00018060

Google Scholar

[32] J. J. Irigoyen, D. W. Emerich, M. Sanchez-Diaz, Water stress induced changes in the concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants, Physiol. Plant, 8 (1992) 455–460.

DOI: 10.1034/j.1399-3054.1992.840109.x

Google Scholar

[33] M. M. Rady, Effect of 24-epibrassinolide on growth yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress, Sci. Hortic, 129 (2011) 232–237.

DOI: 10.1016/j.scienta.2011.03.035

Google Scholar

[34] A. Sh. Osman, M. M. Rady, Effect of humic acid as an additive to growing media to enhance the production of eggplant and tomato transplants. J. Hortic. Sci. Biotechnol, 89 (2014) 237-244.

DOI: 10.1080/14620316.2014.11513074

Google Scholar

[35] K. Kampfenkel, M. Van Montagu, D. Inze, Extraction and determination of ascorbate and dehydroascorbate from plant tissue, Anal. Biochem., 225 (1995) 165–167.

DOI: 10.1006/abio.1995.1127

Google Scholar

[36] L. J. De Kok, F. M. Maas, J. Godeke, A. B. Haaksma, P. J. C. Kuiper, Glutathione, a tripeptide which may function as a temporary storage compound of excessive reduced sulphur in H2S fumigated spinach plants, Plant Soil, 91(1986) 349–352.

DOI: 10.1007/bf02198121

Google Scholar

[37] E. J. M. Konings, H. H. S. Roomans, P. R. Beljaars, Liquid chromatographic determination of tocopherols and tocotrienols in margarine, infant foods, and vegetables, Journal of AOAC International, 79 (1996) 902–906.

DOI: 10.1093/jaoac/79.4.902

Google Scholar

[38] L. S. Ching, and S. Mohamed, Alpha-tocopherol content in 62 edible tropical pants, Journal of Agricultural and Food Chemistry, 49 (2001) 3101–3105.

DOI: 10.1021/jf000891u

Google Scholar

[39] O. H. Lowry, N. J. Rosebrough, A. L. Farr, Protein measurement with the folin phenol reagent, J. Biol. Chem., 193(1) (1951) 265–275.

DOI: 10.1016/s0021-9258(19)52451-6

Google Scholar

[40] Y. Kono, Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase, Arch. Biochem. Biophys, 186 (1) (1978) 189–195.

DOI: 10.1016/0003-9861(78)90479-4

Google Scholar

[41] H. Aebi, Catalase in vitro, Methods Enzymol, 105 (1984) 121–126.

Google Scholar

[42] J. Putter, Peroxidase. In: Bergmeyer, H.U.(Ed.), Methods of Enzymatic Analysis, Verlag Chemie, Weinhan, (1974) 685–690.

Google Scholar

[43] W. C. Snedecor, W. G. Cochran, Statistical Methods, 7th ed. The Iowa State Univ. Press, Ames, Iowa, USA, Some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.) Environ Exp. Bot. 67 (1980) 395 – 402.

DOI: 10.1016/j.envexpbot.2009.05.011

Google Scholar

[44] S. E. Khalil, A.S.A El-Noemani, Effect of bio-fertilizers on growth, yield, water relations, photosynthetic pigments and carbohydrates contents of Origanum vulgare L. plants grown under water stress conditions, Amer. J. Sustain. Agric., 9 (2015) 60–73.

Google Scholar

[45] K. M Tawfik, Evaluating the use of rhizobacterin on cowpea plants grown under salt stress, Res. J. Agric. Biol. Sci. 4(1) (2008) 26–33.

Google Scholar

[46] M. M Slabbert, G. H. J Krüger, Antioxidant enzyme activity, proline accumulation, leaf area and cell membrane stability in water stressed Amaranthus leaves, S. Afr. J. Bot. 95 (2014) 123–128.

DOI: 10.1016/j.sajb.2014.08.008

Google Scholar

[47] N. Wutipraditkul, P. Wongwean, T. Buaboocha, Alleviation of salt-induced oxidative stress in rice seedlings by proline and/or glycinebetaine, Biol. Plant., 59 (3) (2015) 547–553.

DOI: 10.1007/s10535-015-0523-0

Google Scholar

[48] M. M. Rady, Kh. A Hemida, Sequenced application of ascorbate-proline-glutathione improves salt tolerance in maize seedlings, Ecotoxic. Environ. Saf., 133 (2016) 252–259.

DOI: 10.1016/j.ecoenv.2016.07.028

Google Scholar

[49] M. M. Rady, R.S. Taha, A.H.A. Mahdi, Proline enhances growth, productivity and anatomy of two varieties of Lupinus termis L. grown under salt stress, S. Afr. J. Bot., 102 (2016) 221–227.

DOI: 10.1016/j.sajb.2015.07.007

Google Scholar

[50] M. T. Abdelhamid, M. M. Rady, A. Sh. Osman, M. A Abdalla, Exogenous application of proline alleviates salt-induced oxidative stress in Phaseolus vulgaris L. Plants, J. Hortic. Sci. Biotechnol., 88 (2013) 439 – 446.

DOI: 10.1080/14620316.2013.11512989

Google Scholar

[51] V. Ordog, Beneficial effects of microalgae and cyanobacteria in plant/soil-systems, with special regard to their auxin-and cytokinin-like activity, In: International workshop and training course in microalgal biology and biotechnology, Mosonmagyarovar, (1999) 13–26.

Google Scholar

[52] P. Sudhir, S. D. S. Murthy, Effects of salt stress on basic processes of photosynthesis,  Photosynthetica, 42 (2) (2004), 481–486.

DOI: 10.1007/s11099-005-0001-6

Google Scholar

[53] M. A. Gururani, C. P. Upadhyaya, V. Baskar, J. Venkatesh, A. Nookaraju, S.W. Park, Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance, J. Plant Growth Regul., 32 (2) (2013) 245–258.

DOI: 10.1007/s00344-012-9292-6

Google Scholar

[54] H. Greenway, R. Munns, Mechanisms of salt tolerance in nonhalophytes, Ann. Rev. Plant Physiol., 31(1) (1980) 149–190.

DOI: 10.1146/annurev.pp.31.060180.001053

Google Scholar

[55] J. K. Zhu, Plant salt tolerance, Trends Plant Sci., 6 (2001) 66–71.

Google Scholar

[56] N. Chaparzadeh, M. L. D'Amico, R. A. Khavari-Nejad, R. Izzo, F. Navari-Izzo, Antioxidative responses of Calendula officinalis under salinity conditions, Plant Physiol. Biochem., 42 (9) (2004), 695–701.

DOI: 10.1016/j.plaphy.2004.07.001

Google Scholar

[57] M. P. J. C. Ashraf, P. J. C Harris, Potential biochemical indicators of salinity tolerance in plants, Plant Sci., 166 (1) (2004) 3–16.

DOI: 10.1016/j.plantsci.2003.10.024

Google Scholar

[58] N. Karthikeyan, R. Prasanna, A. Sood, P. Jaiswal, S. Nayak, B. D. Kaushik, Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiol., 54 (2009) 43–51.

DOI: 10.1007/s12223-009-0007-8

Google Scholar

[59] V. Mittova, M. Tal, M. Volokita, M. Guy, Salt stress induces up‐regulation of an efficient chloroplast antioxidant system in the salt‐tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species, Physiol. Plant, 115(3) (2002) 393–400.

DOI: 10.1034/j.1399-3054.2002.1150309.x

Google Scholar

[60] M. L. Dionisio-Sese, S. Tobita, Antioxidant responses of rice seedlings to salinity stress, Plant Sci. 135 (1) (1998) 1–9.

DOI: 10.1016/s0168-9452(98)00025-9

Google Scholar

[61] S. C. Singh, R. P. Sinha, D. P Hader, Role of lipids and fatty acids in stress tolerance in cyanobacteria, Acta protozoologica, 41(4) (2002) 297–308.

Google Scholar

[62] N. K. Singh, D.W. Dhar, Cyanobacterial reclamation of salt-affected soil, In: Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming, (2010) 243–275. Springer Netherlands.

DOI: 10.1007/978-90-481-8741-6_9

Google Scholar

[63] V. Ivanova, A.Vassilev, Biometric and physiological characteristics of chrysanthemum (Chrysanthemum indicum L.) plants grown at different rates of nitrogen fertilization, J. Central Eur. Agric., 4 (1) (2003) 1–6.

Google Scholar

[64] R. Sharma, M. K. Khokhar, R. L. Jat, S. K. Khandelwal, Role of algae and cyanobacteria in sustainable agriculture system, Wudpecker J. Agric. Res., 1(9) (2012) 381–388.

Google Scholar