Improving Quality Attributes of Tomato during Cold Storage by Preharvest Foliar Application of Calcium Chloride and Potassium Thiosulfate

Article Preview

Abstract:

The aim of this trial was to investigate the pre-harvest foliar application of calcium chloride and potassium thiosulfate each at 0.0, 0.2 and 0.4 % on some quality of tomato fruit (hybrid 65010) during cold storage. The experimental layout of cold storage experiments was a split-split-plot based on Randomized Complete Blocks design with three replications. Time of cold storage, calcium chloride and potassium thiosulfate levels were randomly distributed in the main, sub-and sub-sub plots, orderly. At the termination of cold storage, effect on tomato fruit titratable acidity, vitamin C and lycopene contents while, negative impact on firmness and total soluble sugars contents was obtained. At termination of cold storage, pre-harvest foliar calcium chloride at 0.2 and/or 0.4 % caused increments in fruit titratable acidity, vitamin C, total soluble sugars, lycopene and firmness contents. In addition, pre-harvest foliar potassium thiosulfate at 0.4 % enhanced fruit vitamin C, total soluble sugars, lycopene and firmness contents and also increased titratable acidity content. Generally, the interaction between cold storage × pre-harvest foliar calcium chloride or potassium thiosulfate at 0.2 and/or 0.4% increased fruit total titratable acidity, vitamin C, total soluble sugars, lycopene and firmness contents. Also, the interaction between pre-harvest calcium chloride × potassium thiosulfate at 0.4 % was distinguished and increased all studied fruit quality at the end of cold storage. The interaction treatment of cold storage × calcium chloride at 0.4 % × potassium thiosulfate at 0.4 % was the best that improved fruit quality more than others.

Info:

* - Corresponding Author

[1] Rick, C. M. 1978. The tomato. Scientific American, 239: 76 - 87.

Google Scholar

[2] Agriculture organization of the united nations statistics division. Available at: http://faostat3.fao.org /browse/Q/QC/E.

Google Scholar

[3] USDA. 2016. United States Department of Agriculture, National Nutrient Database for Standard Reference Release 28 (Basic Report: 11529). Agric. Res. Service. Available at: https://ndb.nal.usda.gov/ndb/foods/show/3223?fgcd=&manu=&lfacet=&format=&count=&max=35&offset=&sort=&qlookup=11529.

Google Scholar

[4] Bonte-Friedheim, C. H. 1989. Prevention of postharvest food losses: fruits, vegetables and root crops. FAO Training Series, (17/2).‏

Google Scholar

[5] Coursey, D. G. 1983. Post- harvest losses in perishable foods of the developing world. In Post-Harvest Physiology and Crop Preservation (pp.485-514). Springer US.

DOI: 10.1007/978-1-4757-0094-7_23

Google Scholar

[6] Bourne, M. 1986. Overview of postharvest problems in fruits and vegetables. Postharvest Food Losses in Fruits and Vegetables: 1 – 16: National Academy Press, Washinton, DC.

Google Scholar

[7] Dorais, M., A. P. Papadoulos and A. Gosselin. 2001. Greenhouse tomato fruit quality. In: Janick, J. (Ed.), Hort. Review. 26: 319 – 239.

DOI: 10.1002/9780470650806.ch5

Google Scholar

[8] Pretorious, J. C., E. Van der Watt and R. A. Buitendag. 2003. Natural products from plants. Dept. soil, crop and climate Sci., Univ. Free State, PO Box 339, Bloemfontein.

Google Scholar

[9] Fischer, A. D. A. and C. Richter. 1986. Influence of organic and mineral fertilizers on yield and quality of potatoes. In: Importance of biological agriculture: in a world of diminishing resources, Vogtmann, H., E. Boehncke and I. Fricke (Eds.). Proc. 5th IFOAM Inter. Scientific Conf. Univ. of Kassel (Germany), Aug. 27 - 30.

Google Scholar

[10] Subbiah, K. and R. Perumal. 1990. Effect of calcium sources, concentrations, stages and number of sprays on physio-chemical properties of tomato fruits. South Indi. Hort. 38(1): 20 - 27.

Google Scholar

[11] Abd-El–Rahman, M. E. 2003. Effect of nitrogen and potassium fertilization on growth, flowering, yield potential and fruits quality of two tomato hybrids. M.Sc. Thesis, Fac. Agric., Cairo Univ.‏

Google Scholar

[12] Kader, A. A. and R. S. Rolle. 2004. The role of post-harvest management in assuring the quality and safety of horticultural produce. Food and Agric. Org. 152.

Google Scholar

[13] Wilde, S. A., R. B. Corey, J. G. Lyer and G. K. Voight. 1985. Soil and Plant Analysis for Tree culture. Oxford and IBM Publishers. New Delhi. India. 3rd ed. 93 – 106 pp.

Google Scholar

[14] Srivastava, R. P. and S. Kumar. 2015. Fruit and vegetable preservation: principles and practices: CBS Publishers and Distributors Pvt. Limited.

Google Scholar

[15] Perkins‐Veazie, P., J. K. Collins, S. D. Pair and W. Roberts. 2001. Lycopene content differs among red‐fleshed watermelon cultivars. J. Sci. Food and Agric. 81(10): 983 - 987.

DOI: 10.1002/jsfa.880

Google Scholar

[16] Al-Rawi, K. M. and A. M. Kalf-Allah. 1980. Design and analysis of Agriculture Experiments. El-Mousl Univ., Iraq,19, 487.p.

Google Scholar

[17] Genanew, T. 2013. Effect of post-harvest treatment on storage behavior and quality of tomato fruit. World J. Agric. Sci. 9(1): 29 – 37.

Google Scholar

[18] Opiyo, A. M. and T. J. Ying. 2005. The effect of 1- methylcyclopropene treatment on the shelf life and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) fruit. Inter. J. Food Sci. and Technol. 40(6): 665 - 673.

DOI: 10.1111/j.1365-2621.2005.00977.x

Google Scholar

[19] Mujtaba, A., T. Masud, S. J. Butt, M. A. Qazalbash, W. Fareed and A. Shahid. 2014. Potential role of calcium chloride, potassium permanganate and boric acid on quality maintenance of tomato cv. Rio grandi at ambient temperature. Inter. J. Bio-Sci. 5 (9): 9 – 20.

DOI: 10.12692/ijb/5.9.9-20

Google Scholar

[20] El-Badawy, H. E. M. 2012. Effect of chitosan and calcium chloride spraying on fruits quality of florida prince peach under cold Storage. Res. J. Agric. Biol. Sci. 8(2): 272 – 281.

Google Scholar

[21] Amjad, M., J. Akhtar, M. A. Ul-HAQ, S. Imran and S. Jacobsen. 2014. Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turk. J. Biol. 38: 208 – 218.

DOI: 10.3906/biy-1305-54

Google Scholar

[22] Abbasi, N. A., L. Zafar, H. A. Khan and A. A. Quresh. 2013. Effects of naphthalene acetic acid application on nutrient uptake, growth, yield and postharvest performance of tomato fruit. Pak. J. Bot. 45(5): 1581-1587.

Google Scholar

[23] Gharezi, M., N. Joshi and E. Sadeghian. 2012. Effect of postharvest treatment on stored cherry tomatoes. J. Nutri. Food Sci. 2: 157 – 66.

Google Scholar

[24] Kazemi, M. 2014 Effect of foliar application of humic acid and calcium chloride on tomato growth. Bull. Env. Pharmacol. Life Sci. 3 (3): 41 – 46.

Google Scholar

[25] Anac, D. and H. Colakoglu. 1993. Response of some major crops to K fertilization. In: Proc. Regional symposium on K availability of soils in West Asia and North Africa 235-247. June 19 - 22, 1993, Tehran, Iran.

Google Scholar

[26] Ibrahim, F. M., G. Abd El-Gawad and M. Bondok. 2015. Physiological impacts of potassium citrate and folic acid on growth, yield and some viral diseases of potato. Plants Middle East J. Agric. 4 (3): 577 – 589.

Google Scholar

[27] Afzal, I., B. Hussain, S. M. A. Basra, S. H. Ullah, Q. Shakeel and M. Kamran. 2015. Foliar application of potassium improves fruit quality and yield of tomato plants. Acta Scientiarum Polonorum., Hortorum Cultus, 14(1):12 -18.

Google Scholar

[28] Rab, A. and I. Haq. 2012. Foliar application of calcium chloride and borax influences plant growth, yield and quality of tomato (Lycopersicon esculentum Mill.) fruit. Turki. J. Agric and Foresty, 36(6): 695 – 701.

DOI: 10.3906/tar-1112-7

Google Scholar

[29] Akhtar, M. E., M. Z. Khan, M. T. Rashid, Z. Ahsan and S. Ahmad. 2010. Effect of potash application on yield and quality of tomato (Lycopersicon esculantum Mill.) Pak. J. Bot. 42 (3): 1695 - 1702.

Google Scholar

[30] Chapagain, B. P. and Z. Wiesman. 2004. Effect of Nutri-Vant-PeaK foliar spray on plant development, yield and fruit quality in greenhouse tomatoes. Scientia Hort. 102: 177 – 188.

DOI: 10.1016/j.scienta.2003.12.010

Google Scholar

[31] Agarwal, S. and A. V. Rao. 1998. Tomato lycopene and low density lipoprotein oxidation: a human dietary intervention study. Lipids 33: 981- 984.

DOI: 10.1007/s11745-998-0295-6

Google Scholar

[32] Yadav, R. K, S. K. Sanwal, P. K. Singh and B. Juri. 2009. Effect of pretreatments and packaging of tomato in LDPE and PET films on the storage-life. J. Food Sci. Technol. 46: 139 - 141.

Google Scholar

[33] Toor, R. K and G. P. Savage. 2005. Antioxidant activity in different fractions of tomatoes. Inter. Food Res. J. 38: 487 -494.

DOI: 10.1016/j.foodres.2004.10.016

Google Scholar

[34] George, B., C. Kaura, D. S. Khurdiya and H. C. Kapoor. 2004. Antioxidant in tomato (Lycopersicon esculentum) as a function of genotype. Food Chem. 84: 45 - 51.

DOI: 10.1016/s0308-8146(03)00165-1

Google Scholar

[35] Maas, J. L. 1998. Compendium of strawberry diseases. St. Paul, Minnesota, USA, APS Press.

Google Scholar

[36] Sams, C. E. 1999. Pre-harvest factors affecting postharvest texture. Postharvest Biol. and Techno. 15(3): 249 – 254.

DOI: 10.1016/s0925-5214(98)00098-2

Google Scholar

[37] Chéour, F., C. Willemot, J. Arul, J. Makhlouf and Y. Desjardins. 1991. Post-harvest response of two strawberry cultivars to foliar application of CaCl2. HortScience. 26: 1186-1189.

DOI: 10.21273/hortsci.26.9.1186

Google Scholar

[38] Moline, H. E. 1994. Pre-harvest management for postharvest biological control. In: Biological Control of Postharvest Diseases - Theory and Practice. C. L. Wilson and M. E. Wisniewski (Eds.). CRC Press, Boca Raton, Florida, USA, 57 – 62.

Google Scholar

[39] Conway, W. S., C. E. Sams, C.Y. Wang and J. A. Abbott. 1994. Additive effects of postharvest calcium and heat treatment on reducing decay and maintaining quality in apples. J. Amer. Soc. Hort. Sci.119(1): 49 - 53.

DOI: 10.21273/jashs.119.1.49

Google Scholar

[40] Coolong, T. W. and W. M. Randle. 2008. The effects of calcium chloride and ammonium sulfate on onion bulb quality at harvest and during Storage. HortScience 43(2): 465 – 471.

DOI: 10.21273/hortsci.43.2.465

Google Scholar

[41] Brüning, D. 1976. Befall with Eulecanium corni Bshe. F. robinarium Dgl. with Eulecanium rufulum Ckll. into fertilization experiments to deciduous wood. Plant Protection J. 3: 193 - 200.

DOI: 10.1080/03235406709428614

Google Scholar

[42] Smith, G. S., C. J. Clark and J. G. Buwalda. 1985. K deficiency of kiwi fruit. Proc. R Hort. Conf. pp.13-16.

Google Scholar

[43] Smith, G. S. and C. J. Clark. 1984. No boron, but plenty of potash. New Zealand Kiwi fruit J. 8: 18.

Google Scholar